Contract Name:
PapparicoTournaments
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
interface IPapparicoPayable {
receive() external payable;
function sendToken(IERC20 _token) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
library DateUtils {
uint256 constant SECONDS_PER_DAY = 24 * 60 * 60;
uint256 constant SECONDS_PER_HOUR = 60 * 60;
uint256 constant SECONDS_PER_MINUTE = 60;
int constant OFFSET19700101 = 2440588;
uint constant DOW_MON = 1;
uint constant DOW_TUE = 2;
uint constant DOW_WED = 3;
uint constant DOW_THU = 4;
uint constant DOW_FRI = 5;
uint constant DOW_SAT = 6;
uint constant DOW_SUN = 7;
function _daysFromDate(uint year, uint month, uint day) internal pure returns (uint _days) {
require(year >= 1970);
int _year = int(year);
int _month = int(month);
int _day = int(day);
int __days = _day
- 32075
+ 1461 * (_year + 4800 + (_month - 14) / 12) / 4
+ 367 * (_month - 2 - (_month - 14) / 12 * 12) / 12
- 3 * ((_year + 4900 + (_month - 14) / 12) / 100) / 4
- OFFSET19700101;
_days = uint(__days);
}
function _daysToDate(uint _days) internal pure returns (uint year, uint month, uint day) {
int __days = int(_days);
int L = __days + 68569 + OFFSET19700101;
int N = 4 * L / 146097;
L = L - (146097 * N + 3) / 4;
int _year = 4000 * (L + 1) / 1461001;
L = L - 1461 * _year / 4 + 31;
int _month = 80 * L / 2447;
int _day = L - 2447 * _month / 80;
L = _month / 11;
_month = _month + 2 - 12 * L;
_year = 100 * (N - 49) + _year + L;
year = uint(_year);
month = uint(_month);
day = uint(_day);
}
function timestampFromDate(uint year, uint month, uint day) internal pure returns (uint timestamp) {
timestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY;
}
function timestampFromDateTime(uint year, uint month, uint day, uint hour, uint minute, uint second) internal pure returns (uint timestamp) {
timestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + hour * SECONDS_PER_HOUR + minute * SECONDS_PER_MINUTE + second;
}
function timestampToDate(uint timestamp) internal pure returns (uint year, uint month, uint day) {
(year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
}
function timestampToDateTime(uint timestamp) internal pure returns (uint year, uint month, uint day, uint hour, uint minute, uint second) {
(year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
uint secs = timestamp % SECONDS_PER_DAY;
hour = secs / SECONDS_PER_HOUR;
secs = secs % SECONDS_PER_HOUR;
minute = secs / SECONDS_PER_MINUTE;
second = secs % SECONDS_PER_MINUTE;
}
function isValidDate(uint year, uint month, uint day) internal pure returns (bool valid) {
if (year >= 1970 && month > 0 && month <= 12) {
uint daysInMonth = _getDaysInMonth(year, month);
if (day > 0 && day <= daysInMonth) {
valid = true;
}
}
}
function isValidDateTime(uint year, uint month, uint day, uint hour, uint minute, uint second) internal pure returns (bool valid) {
if (isValidDate(year, month, day)) {
if (hour < 24 && minute < 60 && second < 60) {
valid = true;
}
}
}
function isLeapYear(uint timestamp) internal pure returns (bool leapYear) {
(uint year,,) = _daysToDate(timestamp / SECONDS_PER_DAY);
leapYear = _isLeapYear(year);
}
function _isLeapYear(uint year) internal pure returns (bool leapYear) {
leapYear = ((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0);
}
function isWeekDay(uint timestamp) internal pure returns (bool weekDay) {
weekDay = getDayOfWeek(timestamp) <= DOW_FRI;
}
function isWeekEnd(uint timestamp) internal pure returns (bool weekEnd) {
weekEnd = getDayOfWeek(timestamp) >= DOW_SAT;
}
function getDaysInMonth(uint timestamp) internal pure returns (uint daysInMonth) {
(uint year, uint month,) = _daysToDate(timestamp / SECONDS_PER_DAY);
daysInMonth = _getDaysInMonth(year, month);
}
function _getDaysInMonth(uint year, uint month) internal pure returns (uint daysInMonth) {
if (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12) {
daysInMonth = 31;
} else if (month != 2) {
daysInMonth = 30;
} else {
daysInMonth = _isLeapYear(year) ? 29 : 28;
}
}
// 1 = Monday, 7 = Sunday
function getDayOfWeek(uint timestamp) internal pure returns (uint dayOfWeek) {
uint _days = timestamp / SECONDS_PER_DAY;
dayOfWeek = (_days + 3) % 7 + 1;
}
function getYear(uint timestamp) internal pure returns (uint year) {
(year,,) = _daysToDate(timestamp / SECONDS_PER_DAY);
}
function getMonth(uint timestamp) internal pure returns (uint month) {
(,month,) = _daysToDate(timestamp / SECONDS_PER_DAY);
}
function getDay(uint timestamp) internal pure returns (uint day) {
(,,day) = _daysToDate(timestamp / SECONDS_PER_DAY);
}
function getHour(uint timestamp) internal pure returns (uint hour) {
uint secs = timestamp % SECONDS_PER_DAY;
hour = secs / SECONDS_PER_HOUR;
}
function getMinute(uint timestamp) internal pure returns (uint minute) {
uint secs = timestamp % SECONDS_PER_HOUR;
minute = secs / SECONDS_PER_MINUTE;
}
function getSecond(uint timestamp) internal pure returns (uint second) {
second = timestamp % SECONDS_PER_MINUTE;
}
function addYears(uint timestamp, uint _years) internal pure returns (uint newTimestamp) {
(uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
year += _years;
uint daysInMonth = _getDaysInMonth(year, month);
if (day > daysInMonth) {
day = daysInMonth;
}
newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
require(newTimestamp >= timestamp);
}
function addMonths(uint timestamp, uint _months) internal pure returns (uint newTimestamp) {
(uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
month += _months;
year += (month - 1) / 12;
month = (month - 1) % 12 + 1;
uint daysInMonth = _getDaysInMonth(year, month);
if (day > daysInMonth) {
day = daysInMonth;
}
newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
require(newTimestamp >= timestamp);
}
function addDays(uint timestamp, uint _days) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp + _days * SECONDS_PER_DAY;
require(newTimestamp >= timestamp);
}
function addHours(uint timestamp, uint _hours) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp + _hours * SECONDS_PER_HOUR;
require(newTimestamp >= timestamp);
}
function addMinutes(uint timestamp, uint _minutes) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp + _minutes * SECONDS_PER_MINUTE;
require(newTimestamp >= timestamp);
}
function addSeconds(uint timestamp, uint _seconds) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp + _seconds;
require(newTimestamp >= timestamp);
}
function subYears(uint timestamp, uint _years) internal pure returns (uint newTimestamp) {
(uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
year -= _years;
uint daysInMonth = _getDaysInMonth(year, month);
if (day > daysInMonth) {
day = daysInMonth;
}
newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
require(newTimestamp <= timestamp);
}
function subMonths(uint timestamp, uint _months) internal pure returns (uint newTimestamp) {
(uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
uint yearMonth = year * 12 + (month - 1) - _months;
year = yearMonth / 12;
month = yearMonth % 12 + 1;
uint daysInMonth = _getDaysInMonth(year, month);
if (day > daysInMonth) {
day = daysInMonth;
}
newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
require(newTimestamp <= timestamp);
}
function subDays(uint timestamp, uint _days) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp - _days * SECONDS_PER_DAY;
require(newTimestamp <= timestamp);
}
function subHours(uint timestamp, uint _hours) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp - _hours * SECONDS_PER_HOUR;
require(newTimestamp <= timestamp);
}
function subMinutes(uint timestamp, uint _minutes) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp - _minutes * SECONDS_PER_MINUTE;
require(newTimestamp <= timestamp);
}
function subSeconds(uint timestamp, uint _seconds) internal pure returns (uint newTimestamp) {
newTimestamp = timestamp - _seconds;
require(newTimestamp <= timestamp);
}
function diffYears(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _years) {
require(fromTimestamp <= toTimestamp);
(uint fromYear,,) = _daysToDate(fromTimestamp / SECONDS_PER_DAY);
(uint toYear,,) = _daysToDate(toTimestamp / SECONDS_PER_DAY);
_years = toYear - fromYear;
}
function diffMonths(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _months) {
require(fromTimestamp <= toTimestamp);
(uint fromYear, uint fromMonth,) = _daysToDate(fromTimestamp / SECONDS_PER_DAY);
(uint toYear, uint toMonth,) = _daysToDate(toTimestamp / SECONDS_PER_DAY);
_months = toYear * 12 + toMonth - fromYear * 12 - fromMonth;
}
function diffDays(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _days) {
require(fromTimestamp <= toTimestamp);
_days = (toTimestamp - fromTimestamp) / SECONDS_PER_DAY;
}
function diffHours(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _hours) {
require(fromTimestamp <= toTimestamp);
_hours = (toTimestamp - fromTimestamp) / SECONDS_PER_HOUR;
}
function diffMinutes(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _minutes) {
require(fromTimestamp <= toTimestamp);
_minutes = (toTimestamp - fromTimestamp) / SECONDS_PER_MINUTE;
}
function diffSeconds(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _seconds) {
require(fromTimestamp <= toTimestamp);
_seconds = toTimestamp - fromTimestamp;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
library PayableUtils {
using SafeERC20 for IERC20;
function sendNative(address _to) internal {
uint256 amount = address(this).balance;
payable(_to).transfer(amount);
emit NativeSent(_to, amount);
}
function sendToken(IERC20 _token, address _to) internal {
uint256 tokenBalance = _token.balanceOf(address(this));
require(tokenBalance > 0, "Can't send 0.");
_token.safeTransfer(_to, tokenBalance);
emit TokenSent(address(_token), _to, tokenBalance);
}
event NativeSent(address indexed _to, uint256 _amount);
event TokenSent(address indexed _token, address indexed _to, uint256 _amount);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "./PapparicoTreasury.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";
contract PapparicoFrequentPlayerPoints is AccessControl, ReentrancyGuard, IPapparicoPayable {
using SafeMath for uint256;
bytes32 constant SOURCE_BENEFIT = keccak256("SOURCE_BENEFIT");
bytes32 constant TARGET_BENEFIT = keccak256("TARGET_BENEFIT");
mapping(address => uint256) public userAccruedPoints;
mapping(address => uint256) public userPointsUsed;
uint256 public totalPointsUsed;
PapparicoTreasury private immutable treasury;
constructor(PapparicoTreasury _treasury) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(SOURCE_BENEFIT, msg.sender);
_grantRole(TARGET_BENEFIT, msg.sender);
treasury = _treasury;
}
function addPoints(address _user, uint256 _amount) external nonReentrant onlySourceBenefit() {
userAccruedPoints[_user] = userAccruedPoints[_user].add(_amount);
emit PointsAdded(_user, _amount);
}
function usePoints(address _user, uint256 _amount) external nonReentrant onlyTargetBenefit() {
require(_amount > 0, "Can't use 0");
require(userAccruedPoints[_user] >= _amount, "Insufficient points");
userPointsUsed[_user] = userPointsUsed[_user].add(_amount);
totalPointsUsed = totalPointsUsed.add(_amount);
userAccruedPoints[_user] = userAccruedPoints[_user].sub(_amount);
emit PointsUsed(_user, _amount);
}
function unusePoints(address _user, uint256 _amount) external nonReentrant onlyTargetBenefit() {
userPointsUsed[_user] = userPointsUsed[_user].sub(_amount);
totalPointsUsed = totalPointsUsed.sub(_amount);
userAccruedPoints[_user] = userAccruedPoints[_user].add(_amount);
emit PointsUnused(_user, _amount);
}
function getUserPointsUsed(address _user) external view returns (uint256) {
return userPointsUsed[_user];
}
receive() external payable override { }
function sendToken(IERC20 _token) external override onlyAdmin() {
PayableUtils.sendToken(_token, address(treasury));
}
modifier onlySourceBenefit() {
require(hasRole(SOURCE_BENEFIT, msg.sender), "NSourBen");
_;
}
modifier onlyTargetBenefit() {
require(hasRole(TARGET_BENEFIT, msg.sender), "NTargBen");
_;
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
_;
}
event PointsAdded(address indexed _user, uint256 indexed _value);
event PointsUsed(address indexed _user, uint256 indexed _value);
event PointsUnused(address indexed _user, uint256 indexed _value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "./PapparicoTreasury.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";
contract PapparicoToken is ERC20("Papparico Finance Token", "PPFT"), AccessControl, IPapparicoPayable {
using SafeMath for uint256;
bytes32 public constant MINTER = keccak256("MINTER");
bytes32 public constant BURNER = keccak256("BURNER");
uint256 public constant DIGITS = 1e18;
uint256 public constant MAX_SUPPLY = 73_000_000_000 * DIGITS;
uint256 public remainingCommunitySupply;
uint256 public remainingTeamSupply;
uint256 public remainingInfraSupply;
uint256 public remainingMarketingSupply;
uint256 public burnt;
mapping(SupplyTarget => uint256) public mintedBySupplyTarget;
enum SupplyTarget {
TOURNAMENTS,
STAKING,
VAULTS,
LIQUIDITY,
POOLS,
TEAM,
INFRASTRUCTURE,
MARKETING
}
struct RemainingSupply {
uint256 remainingCommunitySupply;
uint256 remainingTeamSupply;
uint256 remainingInfraSupply;
uint256 remainingMarketingSupply;
}
struct MintedSupplyTarget {
uint256 mintedForTournaments;
uint256 mintedForStaking;
uint256 mintedForVaults;
uint256 mintedForLiquidity;
uint256 mintedForBullishPools;
uint256 mintedForTeam;
uint256 mintedForInfrastructure;
uint256 mintedForMarketing;
uint256 totalMinted;
uint256 totalBurnt;
}
PapparicoTreasury private immutable papparicoTreasury;
constructor(PapparicoTreasury _papparicoTreasury) {
papparicoTreasury = _papparicoTreasury;
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(MINTER, msg.sender);
_grantRole(BURNER, msg.sender);
//Community
uint256 launchpad = 4_000_000_000 * DIGITS; //5.48%
uint256 liquidity = 7_300_000_000 * DIGITS; //10%
uint256 staking = 3_300_000_000 * DIGITS; //4.52%
uint256 lpMining = 3_650_000_000 * DIGITS; //5%
uint256 bullishPools = 7_300_000_000 * DIGITS; //10%
uint256 tournaments = 14_600_000_000 * DIGITS; //20%
uint256 vaults = 14_600_000_000 * DIGITS; //20%
remainingCommunitySupply = launchpad
.add(liquidity)
.add(staking)
.add(lpMining);
remainingCommunitySupply = remainingCommunitySupply
.add(bullishPools)
.add(tournaments)
.add(vaults);
remainingTeamSupply = 10_950_000_000 * DIGITS; //15%
remainingInfraSupply = 3_650_000_000 * DIGITS; //5%
remainingMarketingSupply = 3_650_000_000 * DIGITS; //5%
}
function mint(address _account, uint256 _amount, SupplyTarget _supplyTarget) public onlyMinter()
checkMintRequirements(_amount, _supplyTarget) {
mintedBySupplyTarget[_supplyTarget] = mintedBySupplyTarget[_supplyTarget].add(_amount);
adjustSupply(_amount, _supplyTarget);
_mint(_account, _amount);
emit Minted(_account, _amount, uint256(_supplyTarget), block.timestamp);
}
function burn(uint256 _amount) public onlyBurner() {
burnt = burnt.add(_amount);
_burn(msg.sender, _amount);
emit Burnt(msg.sender, _amount, block.timestamp);
}
function adjustSupply(uint256 _amount, SupplyTarget _supplyTarget) private onlyMinter() {
if (_supplyTarget == SupplyTarget.TEAM) {
remainingTeamSupply = remainingTeamSupply.sub(_amount);
} else if (_supplyTarget == SupplyTarget.INFRASTRUCTURE) {
remainingInfraSupply = remainingInfraSupply.sub(_amount);
} else if (_supplyTarget == SupplyTarget.MARKETING) {
remainingMarketingSupply = remainingMarketingSupply.sub(_amount);
} else {
remainingCommunitySupply = remainingCommunitySupply.sub(_amount);
}
}
function getMaxSupply() external pure returns (uint256) {
return MAX_SUPPLY;
}
function getRemainingSupply() external view returns (RemainingSupply memory) {
RemainingSupply memory remainingSupply = RemainingSupply({
remainingCommunitySupply: remainingCommunitySupply,
remainingTeamSupply : remainingTeamSupply,
remainingInfraSupply : remainingInfraSupply,
remainingMarketingSupply: remainingMarketingSupply
});
return remainingSupply;
}
function getMintedSupplyTarget() external view returns (MintedSupplyTarget memory) {
MintedSupplyTarget memory minted = MintedSupplyTarget({
mintedForTournaments : mintedBySupplyTarget[SupplyTarget.TOURNAMENTS],
mintedForStaking : mintedBySupplyTarget[SupplyTarget.STAKING],
mintedForVaults : mintedBySupplyTarget[SupplyTarget.VAULTS],
mintedForLiquidity : mintedBySupplyTarget[SupplyTarget.LIQUIDITY],
mintedForBullishPools : mintedBySupplyTarget[SupplyTarget.POOLS],
mintedForTeam : mintedBySupplyTarget[SupplyTarget.TEAM],
mintedForInfrastructure: mintedBySupplyTarget[SupplyTarget.INFRASTRUCTURE],
mintedForMarketing : mintedBySupplyTarget[SupplyTarget.MARKETING],
totalMinted: 0,
totalBurnt: burnt
});
minted.totalMinted = minted.mintedForTournaments
.add(minted.mintedForStaking)
.add(minted.mintedForVaults)
.add(minted.mintedForLiquidity)
.add(minted.mintedForBullishPools)
.add(minted.mintedForTeam)
.add(minted.mintedForInfrastructure)
.add(minted.mintedForMarketing);
return minted;
}
receive() external payable override {
PayableUtils.sendNative(address(papparicoTreasury));
}
function sendToken(IERC20 _token) external override onlyAdmin() {
PayableUtils.sendToken(_token, address(papparicoTreasury));
}
modifier onlyMinter() {
require(hasRole(MINTER, msg.sender), "Not Minter");
_;
}
modifier onlyBurner() {
require(hasRole(BURNER, msg.sender), "Not Burner");
_;
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Not Admin");
_;
}
modifier checkMintRequirements(uint256 _amount, SupplyTarget _supplyTarget) {
require(_amount > 0, "You can't mint 0");
require(_amount.add(totalSupply()) <= MAX_SUPPLY, "Mint exceeds MaxSupply");
if (_supplyTarget == SupplyTarget.TEAM) {
require(remainingTeamSupply >= _amount, "Exceeds the remaining team supply");
} else if (_supplyTarget == SupplyTarget.INFRASTRUCTURE) {
require(remainingInfraSupply >= _amount, "Exceeds the remaining infrastructure supply");
} else if (_supplyTarget == SupplyTarget.MARKETING) {
require(remainingMarketingSupply >= _amount, "Exceeds the remaining marketing supply");
} else {
require(remainingCommunitySupply >= _amount, "Exceeds the remaining community supply");
}
_;
}
event Minted(address indexed _destination, uint256 _amount, uint256 _supplyTarget, uint256 _time);
event Burnt(address indexed _source, uint256 _amount, uint256 _time);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PapparicoVaults.sol";
import "./PapparicoTreasury.sol";
import "./PapparicoFrequentPlayerPoints.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";
contract PapparicoTournaments is AccessControl, ReentrancyGuard, IPapparicoPayable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
bytes32 constant CREATOR = keccak256("CREATOR");
bytes32 constant UPDATER = keccak256("UPDATER");
bytes32 constant PAYER = keccak256("PAYER");
uint256 constant HPERC = 1e4;
enum Status {
SCH,
REG,
LIVE,
FIN,
CANC
}
enum EType {
FREE,
PD_TICK,
PD
}
enum EReq {
NO_REQ,
V_48M
}
struct MainData {
Status status;
EType eType;
EReq eReq;
IERC20 eToken;
IERC20 przToken;
uint256 regPrice;
uint256 regPricePts;
uint256 userEarnPts;
uint256 przPool;
uint256 highestPrz;
uint256 percTreasury;
bool exists;
}
struct RegData {
uint256 minRegs;
uint256 maxRegs;
uint256 currRegs;
}
struct UserReg {
bool paid;
uint256 regTime;
uint256 deregTime;
}
struct UserPrz {
uint256 prz;
uint256 pts;
bool paid;
bool claimed;
bool claimedPts;
}
mapping(uint256 => MainData) public mainData;
mapping(uint256 => RegData) public regData;
mapping(uint256 => mapping(address => UserReg)) public userRegs;
mapping(uint256 => mapping(address => UserPrz)) public userPrizes;
PapparicoVaults private immutable vaults;
PapparicoTreasury private immutable treasury;
PapparicoFrequentPlayerPoints private immutable frequentPoints;
constructor(PapparicoVaults _vaults, PapparicoTreasury _treasury,
PapparicoFrequentPlayerPoints _frequentPoints) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(CREATOR, msg.sender);
_grantRole(UPDATER, msg.sender);
_grantRole(PAYER, msg.sender);
vaults = _vaults;
treasury = _treasury;
frequentPoints = _frequentPoints;
}
function register(uint256 _id, bool _usePoints) external nonReentrant validateReg(_id, _usePoints) {
userRegs[_id][msg.sender].regTime = block.timestamp;
regData[_id].currRegs++;
userPrizes[_id][msg.sender].pts = mainData[_id].userEarnPts;
if (isRegPayable(_id, _usePoints)) {
userRegs[_id][msg.sender].paid = true;
uint256 deduction = Math.mulDiv(mainData[_id].regPrice, mainData[_id].percTreasury, HPERC);
mainData[_id].eToken.safeTransferFrom(msg.sender, address(this), mainData[_id].regPrice);
if (deduction > 0) {
mainData[_id].eToken.safeTransfer(address(treasury), deduction);
}
} else if (mainData[_id].eType == EType.PD_TICK) {
userRegs[_id][msg.sender].paid = false;
frequentPoints.usePoints(msg.sender, mainData[_id].regPricePts);
}
emit Regd(msg.sender, _id, userRegs[_id][msg.sender].regTime);
}
function deregister(uint256 _id) external nonReentrant validateDereg(_id) {
userRegs[_id][msg.sender].deregTime = block.timestamp;
regData[_id].currRegs--;
userPrizes[_id][msg.sender].pts = 0;
if (userRegs[_id][msg.sender].paid) {
uint256 deduction = Math.mulDiv(mainData[_id].regPrice, mainData[_id].percTreasury, HPERC);
if (deduction > 0) {
treasury.sendToken(mainData[_id].eToken, address(this), deduction);
}
mainData[_id].eToken.safeTransfer(msg.sender, mainData[_id].regPrice);
} else if (mainData[_id].eType == EType.PD_TICK) {
frequentPoints.unusePoints(msg.sender, mainData[_id].regPricePts);
}
emit Deregd(msg.sender, _id, userRegs[_id][msg.sender].deregTime);
}
function claimPrize(uint256 _id) external nonReentrant validateClaim(_id) {
uint256 prize = userPrizes[_id][msg.sender].prz;
userPrizes[_id][msg.sender].prz = 0;
userPrizes[_id][msg.sender].claimed = true;
if (prize >= mainData[_id].przPool) {
mainData[_id].przPool = 0;
} else {
mainData[_id].przPool = mainData[_id].przPool.sub(prize);
}
_getPts(_id);
mainData[_id].przToken.safeTransfer(msg.sender, prize);
emit Claimed(msg.sender, _id, mainData[_id].przToken, prize);
}
function claimPts(uint256 _id) external nonReentrant validateClaimPts(_id) {
_getPts(_id);
}
function _getPts(uint256 _id) private {
uint256 pts = userPrizes[_id][msg.sender].pts;
if (pts > 0) {
userPrizes[_id][msg.sender].pts = 0;
userPrizes[_id][msg.sender].claimedPts = true;
frequentPoints.addPoints(msg.sender, pts);
emit PointsClaimed(msg.sender, _id, pts, block.timestamp);
}
}
function create(uint256 _id, MainData memory _mainData, RegData memory _regData) external onlyCreator() validateCreation(_id) {
mainData[_id].status = Status.SCH;
mainData[_id].eType = _mainData.eType;
mainData[_id].eReq = _mainData.eReq;
mainData[_id].eToken = _mainData.eToken;
mainData[_id].przToken = _mainData.przToken;
mainData[_id].regPrice = _mainData.regPrice;
mainData[_id].regPricePts = _mainData.regPricePts;
mainData[_id].userEarnPts = _mainData.userEarnPts;
mainData[_id].przPool = _mainData.przPool;
mainData[_id].highestPrz = _mainData.highestPrz;
mainData[_id].percTreasury = _mainData.percTreasury;
mainData[_id].exists = true;
regData[_id].minRegs = _regData.minRegs;
regData[_id].maxRegs = _regData.maxRegs;
regData[_id].currRegs = 0;
emit Crtd(_id, block.timestamp);
}
function update(uint256 _id, uint256 _status, bool _onlyStatus,
uint256 _przPool, uint256 _highestPrz) external onlyUpdater() {
require(_status >= 0 && _status <= 4, "ISTS");
require(exists(_id), "NEX");
mainData[_id].status = Status(_status);
emit UpdStatus(_id, _status);
if (!_onlyStatus) {
mainData[_id].przPool = _przPool;
mainData[_id].highestPrz = _highestPrz;
emit UpdPrize(_id, _przPool, _highestPrz);
}
}
function payPrize(address _user, uint256 _id, uint256 _prz) external
onlyPayer() validatePayPrize(_user, _id, _prz) {
userPrizes[_id][_user].paid = true;
userPrizes[_id][_user].prz = _prz;
emit Paid(_user, _id, _prz);
}
function isRegPayable(uint256 _id, bool _usePoints) private view returns (bool) {
if (mainData[_id].eType == EType.FREE) {
return false;
}
if (mainData[_id].eType == EType.PD) {
return true;
}
return !_usePoints;
}
function getTotalRegs(uint256 _id) public view returns (uint256) {
return regData[_id].currRegs;
}
function getRegTime(uint256 _id, address _user) public view returns (uint256 regTime, uint256 deregTime) {
return (userRegs[_id][_user].regTime, userRegs[_id][_user].deregTime);
}
function getPrize(uint256 _id, address _user) public view returns (uint256) {
return userPrizes[_id][_user].prz;
}
function getPts(uint256 _id, address _user) public view returns (uint256) {
return userPrizes[_id][_user].pts;
}
function exists(uint256 _id) public view returns (bool) {
return mainData[_id].exists;
}
function isRegd(uint256 _id, address _user) public view returns (bool) {
return userRegs[_id][_user].regTime > userRegs[_id][_user].deregTime;
}
function isRegPaid(uint256 _id, address _user) public view returns (bool) {
return userRegs[_id][_user].paid;
}
function isRegsOpen(uint256 _id) public view returns (bool) {
if (mainData[_id].eType == EType.FREE ||
(mainData[_id].eType == EType.PD && regData[_id].maxRegs > 0)) {
return regData[_id].currRegs < regData[_id].maxRegs;
}
return true;
}
function isMeetReq(uint256 _id, address _user) public view returns (bool) {
if (mainData[_id].eReq == EReq.V_48M) {
return vaults.isDepV( _user, PapparicoVaults.VType.V_48M);
}
return true;
}
function getStatus(uint256 _id) public view returns (Status) {
return mainData[_id].status;
}
function hasPrize(uint256 _id, address _user) public view returns (bool) {
return userPrizes[_id][_user].prz > 0;
}
function isPrizePaid(uint256 _id, address _user) public view returns (bool) {
return userPrizes[_id][_user].paid;
}
function claimed(uint256 _id, address _user) public view returns (bool) {
return userPrizes[_id][_user].claimed;
}
function hasPts(uint256 _id, address _user) public view returns (bool) {
return userPrizes[_id][_user].pts > 0;
}
function claimedPts(uint256 _id, address _user) public view returns (bool) {
return userPrizes[_id][_user].claimedPts;
}
receive() external payable override { }
function sendToken(IERC20 _token) external override onlyAdmin() {
PayableUtils.sendToken(_token, address(treasury));
}
modifier onlyCreator() {
require(hasRole(CREATOR, msg.sender), "NCrt");
_;
}
modifier onlyUpdater() {
require(hasRole(UPDATER, msg.sender), "NUpd");
_;
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
_;
}
modifier onlyPayer() {
require(hasRole(PAYER, msg.sender), "NPay");
_;
}
modifier validateReg(uint256 _id, bool _usePoints) {
require(exists(_id), "NEX");
require(getStatus(_id) != Status.FIN, "FIN");
require(getStatus(_id) != Status.CANC, "CANC");
require(getStatus(_id) == Status.REG, "RNStarted");
require(isRegsOpen(_id), "RClosed");
require(!isRegd(_id, msg.sender), "REG");
require(isMeetReq(_id, msg.sender), "NMet");
if (_usePoints) {
require(mainData[_id].eType == EType.PD_TICK, "NAcc");
uint256 entryPts = mainData[_id].regPricePts;
uint256 availablePts = frequentPoints.userAccruedPoints(msg.sender);
require(availablePts >= entryPts, "InsuffPts");
}
_;
}
modifier validateDereg(uint256 _id) {
require(exists(_id), "NEX");
require(getStatus(_id) != Status.FIN, "FIN");
require(getStatus(_id) != Status.LIVE, "PRG");
require(isRegd(_id, msg.sender), "NREG");
_;
}
modifier validateClaim(uint256 _id) {
require(!claimed(_id, msg.sender), "CLMD");
require(exists(_id), "NEX");
require(getStatus(_id) == Status.FIN, "NFIN");
require(isRegd(_id, msg.sender), "NREG");
require(address(mainData[_id].przToken) != address(0), "NPRZ");
require(hasPrize(_id, msg.sender), "NPRZ");
require(mainData[_id].przPool > 0, "NPRZ.POOL");
_;
}
modifier validateClaimPts(uint256 _id) {
require(!claimedPts(_id, msg.sender), "CLMD");
require(exists(_id), "NEX");
require(getStatus(_id) == Status.FIN, "NFIN");
require(isRegd(_id, msg.sender), "NREG");
require(hasPts(_id, msg.sender), "NPTS");
_;
}
modifier validatePayPrize(address _user, uint256 _id, uint256 _prz) {
require(exists(_id), "NEX");
require(isRegd(_id, _user), "NREG");
require(getStatus(_id) == Status.FIN, "NFIN");
require(!userPrizes[_id][_user].paid, "PAID");
require(_prz <= mainData[_id].highestPrz, "IPRZ");
_;
}
modifier validateCreation(uint256 _id) {
require(!exists(_id), "EX");
_;
}
event Crtd(uint256 indexed _id, uint256 _time);
event UpdStatus(uint256 indexed _id, uint256 _status);
event UpdPrize(uint256 indexed _id, uint256 _przPool, uint256 _percMaxPrz);
event Regd(address indexed _user, uint256 indexed _id, uint256 _regTime);
event Deregd(address indexed _user, uint256 indexed _id, uint256 _deregTime);
event Claimed(address indexed _user, uint256 indexed _id, IERC20 _tkn, uint256 _prz);
event Paid(address indexed _user, uint256 indexed _id, uint256 _prz);
event PointsClaimed(address indexed _user, uint256 indexed _id, uint256 _pts, uint256 _time);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
contract PapparicoTreasury is AccessControl {
using SafeERC20 for IERC20;
bytes32 public constant TOKEN_SENDER = keccak256("SENDER");
constructor() {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(TOKEN_SENDER, msg.sender);
}
receive() external payable { }
function sendNative(address _to, uint256 _amount) public onlyTokenSender() {
require(_amount > 0, "Can't send 0.");
require(address(this).balance >= _amount, "Not enough balance.");
payable(_to).transfer(_amount);
emit NativeSent(_to, _amount);
}
function sendToken(IERC20 _token, address _to, uint256 _amount) public onlyTokenSender() {
require(_amount > 0, "Can't send 0.");
require(_token.balanceOf(address(this)) >= _amount, "Not enough balance.");
_token.safeTransfer(_to, _amount);
emit TokenSent(address(_token), _to, _amount);
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Caller does not have the Admin role.");
_;
}
modifier onlyTokenSender() {
require(hasRole(TOKEN_SENDER, msg.sender), "Caller does not have the Token Sender role.");
_;
}
event NativeSent(address indexed _to, uint256 _amount);
event TokenSent(address indexed _token, address indexed _to, uint256 _amount);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "./PapparicoToken.sol";
import "./PapparicoTreasury.sol";
import "./PapparicoFrequentPlayerPoints.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";
import "./lib/DateUtils.sol";
contract PapparicoVaults is AccessControl, ReentrancyGuard, Pausable, IPapparicoPayable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
bytes32 constant OPERATOR = keccak256("OPERATOR");
uint256 constant DIGITS = 1e18;
uint256 constant PRECISION = 1e27;
uint256 constant EMISSION = 6e1;
uint256 constant EMISSION_PRECISION = 6e5;
uint256 constant HPERC = 1e4;
enum VType {
V_1M,
V_6M,
V_12M,
V_24M,
V_48M
}
struct UserDeposit {
VType vType;
uint256 depositId;
uint256 depositedValue;
uint256 lockedUntil;
bool isUnlocked;
}
mapping(VType => uint256) public currentRewardsPerToken;
mapping(VType => uint256) public lastsUpdateTime;
uint256 public avgBlockInterval;
uint256 public rewardEmissionPerBlock;
uint256 public earlyWithdrawalPoints;
uint256 public earlyWithdrawalPerc;
bool public isInitialized;
uint256 public startBlock;
uint256 public idCounter;
address[] public users;
mapping(address => uint256) public userIds;
mapping(address => mapping(VType => UserDeposit[])) public userDeposits;
uint256 public totalDepositedAllUsers;
mapping(VType => uint256) public totalDepositedPerVault;
mapping(address => mapping(VType => uint256)) public userCurrentRewards;
mapping(address => mapping(VType => uint256)) public userRewardsPerTokenPaid;
mapping(address => uint256) public userTotalClaimed;
uint256 public totalClaimed;
uint256 public totalRewards;
PapparicoToken private immutable papparicoToken;
PapparicoTreasury private immutable papparicoTreasury;
PapparicoFrequentPlayerPoints private immutable frequentPoints;
constructor(PapparicoToken _papparicoToken, PapparicoTreasury _papparicoTreasury,
PapparicoFrequentPlayerPoints _frequentPoints) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(OPERATOR, msg.sender);
papparicoToken = _papparicoToken;
papparicoTreasury = _papparicoTreasury;
frequentPoints = _frequentPoints;
avgBlockInterval = 6 seconds;
}
function initialize(uint256 _startBlock, uint256 _rewardEmissionPerBlock) external onlyOperator()
validateInitialize(_startBlock, _rewardEmissionPerBlock) {
isInitialized = true;
uint256 currentTime = block.timestamp;
uint256 currentBlock = block.number;
startBlock = _startBlock;
uint256 lastTime = (_startBlock - currentBlock).mul(avgBlockInterval).add(currentTime);
for (uint8 i; i <= 4; ++i) {
lastsUpdateTime[VType(i)] = lastTime;
}
rewardEmissionPerBlock = _rewardEmissionPerBlock;
emit Initialized(currentTime);
}
function supplyRewards(uint256 _rewards) external onlyOperator() whenNotPaused() {
totalRewards = totalRewards.add(_rewards);
papparicoToken.mint(address(this), _rewards, PapparicoToken.SupplyTarget.VAULTS);
emit RewardsSupplied(_rewards, block.timestamp);
}
function deposit(uint256 _amount, VType _vType) external nonReentrant() whenNotPaused()
validateDeposit(_amount, _vType)
updateUserReward(msg.sender, _vType) {
_claim();
totalDepositedAllUsers = totalDepositedAllUsers.add(_amount);
totalDepositedPerVault[_vType] = totalDepositedPerVault[_vType].add(_amount);
uint256 depId = block.timestamp;
_addDeposit(_vType, depId, _amount, calculateLockedUntil(depId, _vType));
if (userIds[msg.sender] == 0) {
++idCounter;
userIds[msg.sender] = idCounter;
users.push(msg.sender);
frequentPoints.addPoints(msg.sender, calculateFrequentPlayerPoints(_vType));
}
IERC20(papparicoToken).safeTransferFrom(msg.sender, address(this), _amount);
emit Deposited(msg.sender, depId, _amount, uint256(_vType), block.timestamp);
}
function withdraw(VType _vType, uint256 _depId) external nonReentrant() whenNotPaused()
validateWithdrawal(_vType, _depId)
updateUserReward(msg.sender, _vType) {
_claim();
uint256 depositedValue = getDepositedValue(_vType, _depId);
_withdraw(_vType, _depId, depositedValue);
IERC20(papparicoToken).safeTransfer(msg.sender, depositedValue);
emit Withdrawn(msg.sender, _depId, depositedValue, uint256(_vType), block.timestamp);
}
function earlyWithdraw(VType _vType, uint256 _depId) external nonReentrant() whenNotPaused()
validateEarlyWithdrawal(_vType, _depId)
updateUserReward(msg.sender, _vType) {
_claim();
uint256 depositedValue = getDepositedValue(_vType, _depId);
uint256 early = depositedValue.mul(earlyWithdrawalPerc).div(HPERC);
_withdraw(_vType, _depId, early);
frequentPoints.usePoints(msg.sender, earlyWithdrawalPoints);
uint256 locked = calculateLockedUntil(_depId, _vType);
_addDeposit(_vType, _depId, depositedValue.sub(early), locked);
IERC20(papparicoToken).safeTransfer(msg.sender, early);
emit Withdrawn(msg.sender, _depId, early, uint256(_vType), block.timestamp);
}
function upgrade(VType _sourceVType, uint256 _depId, VType _targetVType) external nonReentrant() whenNotPaused()
validateUpgrade(_sourceVType, _depId, _targetVType)
updateUserReward(msg.sender, _sourceVType)
updateUserReward(msg.sender, _targetVType) {
_claim();
uint256 depositedValue = getDepositedValue(_sourceVType, _depId);
totalDepositedPerVault[_sourceVType] = totalDepositedPerVault[_sourceVType].sub(depositedValue);
totalDepositedPerVault[_targetVType] = totalDepositedPerVault[_targetVType].add(depositedValue);
removeDeposit(_sourceVType, _depId);
uint256 depId = block.timestamp;
uint256 locked = calculateLockedUntil(depId, _targetVType);
_addDeposit(_targetVType, depId, depositedValue, locked);
emit Upgraded(msg.sender, _depId, depId, uint256(_targetVType), block.timestamp);
}
function claim() public nonReentrant() whenNotPaused() {
_claim();
}
function _addDeposit(VType _vType, uint256 _depId, uint256 _depValue, uint256 _lockedUntil) private {
UserDeposit memory userDeposit = UserDeposit({
vType: _vType,
depositId: _depId,
depositedValue: _depValue,
lockedUntil: _lockedUntil,
isUnlocked: false
});
userDeposits[msg.sender][_vType].push(userDeposit);
}
function _withdraw(VType _vType, uint256 _depId, uint256 _amount) private {
totalDepositedAllUsers = totalDepositedAllUsers.sub(_amount);
totalDepositedPerVault[_vType] = totalDepositedPerVault[_vType].sub(_amount);
removeDeposit(_vType, _depId);
}
function _claim() private updateUserRewardWhenClaim(msg.sender) {
uint256 rewards;
address user = msg.sender;
for (uint8 i; i <= 4; ++i) {
if (isDepV(user, VType(i))) {
rewards = rewards.add(userCurrentRewards[user][VType(i)]);
userCurrentRewards[user][VType(i)] = 0;
}
}
if (rewards > 0) {
userTotalClaimed[msg.sender] = userTotalClaimed[msg.sender].add(rewards);
totalClaimed = totalClaimed.add(rewards);
totalRewards = totalRewards.sub(rewards);
IERC20(papparicoToken).safeTransfer(user, rewards);
emit Claimed(user, rewards, block.timestamp);
}
}
function depositsOf(address _user, VType _vType) external view returns (UserDeposit[] memory) {
UserDeposit[] memory deposits = userDeposits[_user][_vType];
for (uint256 i; i < userDeposits[_user][_vType].length; ++i) {
deposits[i].isUnlocked = userDeposits[_user][_vType][i].lockedUntil < block.timestamp;
}
return deposits;
}
function getDepositedValue(VType _vType, uint256 _depId) private view returns (uint256) {
( , , , uint256 value, ) = depositExists(msg.sender, _vType, _depId);
return value;
}
function depositExists(address _user, VType _vType, uint256 _depId) private view returns (bool, uint256, uint256, uint256, uint256) {
uint256 length = userDeposits[_user][_vType].length;
for (uint256 pos; pos < length; ++pos) {
if (userDeposits[_user][_vType][pos].depositId == _depId) {
return (
true,
pos,
userDeposits[_user][_vType][pos].depositId,
userDeposits[_user][_vType][pos].depositedValue,
userDeposits[_user][_vType][pos].lockedUntil
);
}
}
return (false, 0, 0, 0, 0);
}
function getDepositArrayPosition(VType _vType, uint256 _depId) private view returns (uint256) {
( , uint256 pos, , , ) = depositExists(msg.sender, _vType, _depId);
return pos;
}
function removeDeposit(VType _vType, uint256 _depId) private {
uint256 length = userDeposits[msg.sender][_vType].length;
uint256 position = getDepositArrayPosition(_vType, _depId);
userDeposits[msg.sender][_vType][position] = userDeposits[msg.sender][_vType][length - 1];
userDeposits[msg.sender][_vType].pop();
}
function isEmissionsStarted() public view returns (bool) {
return isInitialized && block.number >= startBlock;
}
function calculateFrequentPlayerPoints(VType _vType) private pure returns (uint256) {
uint16 points =
(_vType == VType.V_1M ? 1 :
(_vType == VType.V_6M ? 2 :
(_vType == VType.V_12M ? 3 :
(_vType == VType.V_24M ? 4 : 5))));
return points;
}
function calculateLockedUntil(uint256 currentTime, VType _vType) public pure returns (uint256) {
uint16 months =
(_vType == VType.V_1M ? 1 :
(_vType == VType.V_6M ? 6 :
(_vType == VType.V_12M ? 12 :
(_vType == VType.V_24M ? 24 : 48))));
return DateUtils.addMonths(currentTime, months);
}
function calculateLockedUntil(VType _vType) public view returns (uint256) {
return calculateLockedUntil(block.timestamp, _vType);
}
function calculateRewardRate(VType _vType) private view returns (uint256) {
return rewardEmissionPerBlock.mul(getMultiplier(_vType)).mul(EMISSION).div(avgBlockInterval);
}
function getMultiplier(VType _vType) private pure returns (uint8) {
return
(_vType == VType.V_1M ? 2 :
(_vType == VType.V_6M ? 12 :
(_vType == VType.V_12M ? 24 :
(_vType == VType.V_24M ? 48 : 96))));
}
function calculateRewardPerToken(VType _vType) private view returns (uint256) {
if (!isEmissionsStarted()) {
return 0;
}
if (totalDepositedAllUsers == 0 || totalDepositedPerVault[_vType] == 0) {
return currentRewardsPerToken[_vType];
}
return currentRewardsPerToken[_vType].add((block.timestamp - lastsUpdateTime[_vType])
.mul(calculateRewardRate(_vType)).mul(PRECISION).div(EMISSION_PRECISION).div(totalDepositedPerVault[_vType]));
}
function sumUserDeposits(address _user, VType _vType) private view returns (uint256) {
uint256 sum = 0;
uint256 length = userDeposits[_user][_vType].length;
if (length == 0) {
return sum;
}
for (uint256 i; i < length; ++i) {
sum = sum.add(userDeposits[_user][_vType][i].depositedValue);
}
return sum;
}
function rewardsOf(address _user, VType _vType) private view returns (uint256) {
uint256 userRewards = 0;
if (!isEmissionsStarted()) {
return userRewards;
}
userRewards = userRewards.add
(
sumUserDeposits(_user, _vType)
.mul(calculateRewardPerToken(_vType).sub(userRewardsPerTokenPaid[_user][_vType]))
.mul(DIGITS).div(PRECISION)
);
return userRewards.add(userCurrentRewards[_user][_vType]);
}
function rewardsOf(address _user) public view returns (uint256) {
uint256 rewards = 0;
for (uint8 i; i <= 4; ++i) {
if (isDepV(_user, VType(i))) {
rewards = rewards.add(rewardsOf(_user, VType(i)));
}
}
return rewards;
}
function isDepV(address _user, VType _vType) public view returns (bool) {
return sumUserDeposits(_user, _vType) > 0;
}
function isDepAV(address _user) public view returns (bool) {
return
this.isDepV(_user, VType.V_1M) ||
this.isDepV(_user, VType.V_6M) ||
this.isDepV(_user, VType.V_12M) ||
this.isDepV(_user, VType.V_24M) ||
this.isDepV(_user, VType.V_48M);
}
function setStartBlock(uint256 _startBlock) external onlyOperator() {
require(!isEmissionsStarted(), "EmSt");
require(_startBlock >= block.number, "InvB");
startBlock = _startBlock;
uint256 currentTime = block.timestamp;
uint256 currentBlock = block.number;
uint256 lastTime = (_startBlock - currentBlock).mul(avgBlockInterval).add(currentTime);
for (uint8 i; i <= 4; ++i) {
lastsUpdateTime[VType(i)] = lastTime;
}
}
function setAvgBlockInterval(uint256 _secondsAmount) external onlyOperator() {
avgBlockInterval = _secondsAmount;
emit AvgBlockIntervalChanged(block.timestamp, _secondsAmount);
}
function setRewardEmissionPerBlock(uint256 _amount) external onlyOperator() {
if (isEmissionsStarted()) {
updateAll();
}
rewardEmissionPerBlock = _amount;
emit RewardEmissionPerBlockChanged(block.timestamp, _amount);
}
function setEarlyWithdrawalParams(uint256 _points, uint256 _perc) external onlyOperator() {
earlyWithdrawalPoints = _points;
earlyWithdrawalPerc = _perc;
}
function updateAll() private onlyOperator() {
for (uint256 i; i < users.length; ++i) {
for (uint8 j; j <= 4; ++j) {
address user = users[i];
VType vType = VType(j);
if (isDepV(user, vType)) {
doUpdateUserReward(user, vType);
}
}
}
}
receive() external payable override {
PayableUtils.sendNative(address(papparicoTreasury));
}
function sendToken(IERC20 _token) external override onlyAdmin() {
require(address(_token) != address(papparicoToken), "Can't send Papparico");
PayableUtils.sendToken(_token, address(papparicoTreasury));
}
function pause() public onlyAdmin() {
_pause();
}
function unpause() public onlyAdmin() {
_unpause();
}
function doUpdateUserReward(address _user, VType _vType) private {
if (isEmissionsStarted()) {
currentRewardsPerToken[_vType] = calculateRewardPerToken(_vType);
lastsUpdateTime[_vType] = block.timestamp;
userCurrentRewards[_user][_vType] = rewardsOf(_user, _vType);
userRewardsPerTokenPaid[_user][_vType] = currentRewardsPerToken[_vType];
}
}
modifier updateUserRewardWhenClaim(address _user) {
if (isEmissionsStarted()) {
for (uint8 i; i <= 4; ++i) {
if (isDepV(_user, VType(i))) {
doUpdateUserReward(_user, VType(i));
}
}
}
_;
}
modifier updateUserReward(address _user, VType _vType) {
doUpdateUserReward(_user, _vType);
_;
}
modifier validateInitialize(uint256 _startBlock, uint256 _rewardEmissionPerBlock) {
require(!isInitialized, "Inilzd");
require(_startBlock >= block.number, "InvB");
require(_rewardEmissionPerBlock > 0, "Gt0");
_;
}
modifier validateDeposit(uint256 _amount, VType _vType) {
require(_amount > 0, "Gt0");
require(papparicoToken.balanceOf(msg.sender) >= _amount, "Nfun");
_;
}
modifier validateWithdrawal(VType _vType, uint256 _depId) {
(bool exists, , , , uint256 lockedUntil) = depositExists(msg.sender, _vType, _depId);
require(exists, "Nexists");
require(lockedUntil <= block.timestamp, "Ntime");
_;
}
modifier validateEarlyWithdrawal(VType _vType, uint256 _depId) {
require(earlyWithdrawalPoints > 0 && earlyWithdrawalPerc > 0, "NActd");
uint256 availablePts = frequentPoints.userAccruedPoints(msg.sender);
require(availablePts >= earlyWithdrawalPoints, "InsuffPts");
(bool exists, , , , uint256 lockedUntil) = depositExists(msg.sender, _vType, _depId);
require(exists, "Nexists");
_;
}
modifier validateUpgrade(VType _sourceVType, uint256 _depId, VType _targetVType) {
(bool exists, , , , ) = depositExists(msg.sender, _sourceVType, _depId);
require(exists, "Nexists");
require(_sourceVType != VType.V_48M, "NUpgd");
require(uint(_sourceVType) < uint(_targetVType), "InvSrc");
_;
}
modifier onlyOperator() {
require(hasRole(OPERATOR, msg.sender), "NOptr");
_;
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
_;
}
event Initialized(uint256 _timestamp);
event RewardsSupplied(uint256 _rewards, uint256 _timestamp);
event AvgBlockIntervalChanged(uint256 _timestamp, uint256 _value);
event RewardEmissionPerBlockChanged(uint256 _timestamp, uint256 _value);
event Deposited(address indexed _user, uint256 _depositId, uint256 _amount, uint256 _vType, uint256 _timestamp);
event Withdrawn(address indexed _user, uint256 _depositId, uint256 _amount, uint256 _vType, uint256 _timestamp);
event Claimed(address indexed _user, uint256 _amount, uint256 _timestamp);
event Upgraded(address indexed _user, uint256 _sourceDepId, uint256 _targetDepId, uint256 _targetVType, uint256 _timestamp);
}