CRO Price: $0.08 (+1.19%)

Contract Diff Checker

Contract Name:
PapparicoTournaments

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

interface IPapparicoPayable {

  receive() external payable;

  function sendToken(IERC20 _token) external;
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

library DateUtils {

  uint256 constant SECONDS_PER_DAY = 24 * 60 * 60;
  uint256 constant SECONDS_PER_HOUR = 60 * 60;
  uint256 constant SECONDS_PER_MINUTE = 60;
  int constant OFFSET19700101 = 2440588;

  uint constant DOW_MON = 1;
  uint constant DOW_TUE = 2;
  uint constant DOW_WED = 3;
  uint constant DOW_THU = 4;
  uint constant DOW_FRI = 5;
  uint constant DOW_SAT = 6;
  uint constant DOW_SUN = 7;

  function _daysFromDate(uint year, uint month, uint day) internal pure returns (uint _days) {
    require(year >= 1970);
    int _year = int(year);
    int _month = int(month);
    int _day = int(day);

    int __days = _day
      - 32075
      + 1461 * (_year + 4800 + (_month - 14) / 12) / 4
      + 367 * (_month - 2 - (_month - 14) / 12 * 12) / 12
      - 3 * ((_year + 4900 + (_month - 14) / 12) / 100) / 4
      - OFFSET19700101;

    _days = uint(__days);
  }

  function _daysToDate(uint _days) internal pure returns (uint year, uint month, uint day) {
    int __days = int(_days);

    int L = __days + 68569 + OFFSET19700101;
    int N = 4 * L / 146097;
    L = L - (146097 * N + 3) / 4;
    int _year = 4000 * (L + 1) / 1461001;
    L = L - 1461 * _year / 4 + 31;
    int _month = 80 * L / 2447;
    int _day = L - 2447 * _month / 80;
    L = _month / 11;
    _month = _month + 2 - 12 * L;
    _year = 100 * (N - 49) + _year + L;

    year = uint(_year);
    month = uint(_month);
    day = uint(_day);
  }

  function timestampFromDate(uint year, uint month, uint day) internal pure returns (uint timestamp) {
      timestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY;
  }
  function timestampFromDateTime(uint year, uint month, uint day, uint hour, uint minute, uint second) internal pure returns (uint timestamp) {
      timestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + hour * SECONDS_PER_HOUR + minute * SECONDS_PER_MINUTE + second;
  }
  function timestampToDate(uint timestamp) internal pure returns (uint year, uint month, uint day) {
      (year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
  }
  function timestampToDateTime(uint timestamp) internal pure returns (uint year, uint month, uint day, uint hour, uint minute, uint second) {
      (year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
      uint secs = timestamp % SECONDS_PER_DAY;
      hour = secs / SECONDS_PER_HOUR;
      secs = secs % SECONDS_PER_HOUR;
      minute = secs / SECONDS_PER_MINUTE;
      second = secs % SECONDS_PER_MINUTE;
  }

  function isValidDate(uint year, uint month, uint day) internal pure returns (bool valid) {
      if (year >= 1970 && month > 0 && month <= 12) {
          uint daysInMonth = _getDaysInMonth(year, month);
          if (day > 0 && day <= daysInMonth) {
              valid = true;
          }
      }
  }
  function isValidDateTime(uint year, uint month, uint day, uint hour, uint minute, uint second) internal pure returns (bool valid) {
      if (isValidDate(year, month, day)) {
          if (hour < 24 && minute < 60 && second < 60) {
              valid = true;
          }
      }
  }
  function isLeapYear(uint timestamp) internal pure returns (bool leapYear) {
      (uint year,,) = _daysToDate(timestamp / SECONDS_PER_DAY);
      leapYear = _isLeapYear(year);
  }
  function _isLeapYear(uint year) internal pure returns (bool leapYear) {
      leapYear = ((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0);
  }
  function isWeekDay(uint timestamp) internal pure returns (bool weekDay) {
      weekDay = getDayOfWeek(timestamp) <= DOW_FRI;
  }
  function isWeekEnd(uint timestamp) internal pure returns (bool weekEnd) {
      weekEnd = getDayOfWeek(timestamp) >= DOW_SAT;
  }
  function getDaysInMonth(uint timestamp) internal pure returns (uint daysInMonth) {
      (uint year, uint month,) = _daysToDate(timestamp / SECONDS_PER_DAY);
      daysInMonth = _getDaysInMonth(year, month);
  }
  function _getDaysInMonth(uint year, uint month) internal pure returns (uint daysInMonth) {
      if (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12) {
          daysInMonth = 31;
      } else if (month != 2) {
          daysInMonth = 30;
      } else {
          daysInMonth = _isLeapYear(year) ? 29 : 28;
      }
  }
  // 1 = Monday, 7 = Sunday
  function getDayOfWeek(uint timestamp) internal pure returns (uint dayOfWeek) {
      uint _days = timestamp / SECONDS_PER_DAY;
      dayOfWeek = (_days + 3) % 7 + 1;
  }

  function getYear(uint timestamp) internal pure returns (uint year) {
      (year,,) = _daysToDate(timestamp / SECONDS_PER_DAY);
  }
  function getMonth(uint timestamp) internal pure returns (uint month) {
      (,month,) = _daysToDate(timestamp / SECONDS_PER_DAY);
  }
  function getDay(uint timestamp) internal pure returns (uint day) {
      (,,day) = _daysToDate(timestamp / SECONDS_PER_DAY);
  }
  function getHour(uint timestamp) internal pure returns (uint hour) {
      uint secs = timestamp % SECONDS_PER_DAY;
      hour = secs / SECONDS_PER_HOUR;
  }
  function getMinute(uint timestamp) internal pure returns (uint minute) {
      uint secs = timestamp % SECONDS_PER_HOUR;
      minute = secs / SECONDS_PER_MINUTE;
  }
  function getSecond(uint timestamp) internal pure returns (uint second) {
      second = timestamp % SECONDS_PER_MINUTE;
  }

  function addYears(uint timestamp, uint _years) internal pure returns (uint newTimestamp) {
      (uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
      year += _years;
      uint daysInMonth = _getDaysInMonth(year, month);
      if (day > daysInMonth) {
          day = daysInMonth;
      }
      newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
      require(newTimestamp >= timestamp);
  }
  function addMonths(uint timestamp, uint _months) internal pure returns (uint newTimestamp) {
      (uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
      month += _months;
      year += (month - 1) / 12;
      month = (month - 1) % 12 + 1;
      uint daysInMonth = _getDaysInMonth(year, month);
      if (day > daysInMonth) {
          day = daysInMonth;
      }
      newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
      require(newTimestamp >= timestamp);
  }
  function addDays(uint timestamp, uint _days) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp + _days * SECONDS_PER_DAY;
      require(newTimestamp >= timestamp);
  }
  function addHours(uint timestamp, uint _hours) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp + _hours * SECONDS_PER_HOUR;
      require(newTimestamp >= timestamp);
  }
  function addMinutes(uint timestamp, uint _minutes) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp + _minutes * SECONDS_PER_MINUTE;
      require(newTimestamp >= timestamp);
  }
  function addSeconds(uint timestamp, uint _seconds) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp + _seconds;
      require(newTimestamp >= timestamp);
  }

  function subYears(uint timestamp, uint _years) internal pure returns (uint newTimestamp) {
      (uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
      year -= _years;
      uint daysInMonth = _getDaysInMonth(year, month);
      if (day > daysInMonth) {
          day = daysInMonth;
      }
      newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
      require(newTimestamp <= timestamp);
  }
  function subMonths(uint timestamp, uint _months) internal pure returns (uint newTimestamp) {
      (uint year, uint month, uint day) = _daysToDate(timestamp / SECONDS_PER_DAY);
      uint yearMonth = year * 12 + (month - 1) - _months;
      year = yearMonth / 12;
      month = yearMonth % 12 + 1;
      uint daysInMonth = _getDaysInMonth(year, month);
      if (day > daysInMonth) {
          day = daysInMonth;
      }
      newTimestamp = _daysFromDate(year, month, day) * SECONDS_PER_DAY + timestamp % SECONDS_PER_DAY;
      require(newTimestamp <= timestamp);
  }
  function subDays(uint timestamp, uint _days) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp - _days * SECONDS_PER_DAY;
      require(newTimestamp <= timestamp);
  }
  function subHours(uint timestamp, uint _hours) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp - _hours * SECONDS_PER_HOUR;
      require(newTimestamp <= timestamp);
  }
  function subMinutes(uint timestamp, uint _minutes) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp - _minutes * SECONDS_PER_MINUTE;
      require(newTimestamp <= timestamp);
  }
  function subSeconds(uint timestamp, uint _seconds) internal pure returns (uint newTimestamp) {
      newTimestamp = timestamp - _seconds;
      require(newTimestamp <= timestamp);
  }

  function diffYears(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _years) {
      require(fromTimestamp <= toTimestamp);
      (uint fromYear,,) = _daysToDate(fromTimestamp / SECONDS_PER_DAY);
      (uint toYear,,) = _daysToDate(toTimestamp / SECONDS_PER_DAY);
      _years = toYear - fromYear;
  }
  function diffMonths(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _months) {
      require(fromTimestamp <= toTimestamp);
      (uint fromYear, uint fromMonth,) = _daysToDate(fromTimestamp / SECONDS_PER_DAY);
      (uint toYear, uint toMonth,) = _daysToDate(toTimestamp / SECONDS_PER_DAY);
      _months = toYear * 12 + toMonth - fromYear * 12 - fromMonth;
  }
  function diffDays(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _days) {
      require(fromTimestamp <= toTimestamp);
      _days = (toTimestamp - fromTimestamp) / SECONDS_PER_DAY;
  }
  function diffHours(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _hours) {
      require(fromTimestamp <= toTimestamp);
      _hours = (toTimestamp - fromTimestamp) / SECONDS_PER_HOUR;
  }
  function diffMinutes(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _minutes) {
      require(fromTimestamp <= toTimestamp);
      _minutes = (toTimestamp - fromTimestamp) / SECONDS_PER_MINUTE;
  }
  function diffSeconds(uint fromTimestamp, uint toTimestamp) internal pure returns (uint _seconds) {
      require(fromTimestamp <= toTimestamp);
      _seconds = toTimestamp - fromTimestamp;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

library PayableUtils {

  using SafeERC20 for IERC20;

  function sendNative(address _to) internal {
    uint256 amount = address(this).balance;
    payable(_to).transfer(amount);
    emit NativeSent(_to, amount);
  }

  function sendToken(IERC20 _token, address _to) internal {
    uint256 tokenBalance = _token.balanceOf(address(this));
    require(tokenBalance > 0, "Can't send 0.");
    _token.safeTransfer(_to, tokenBalance);
    emit TokenSent(address(_token), _to, tokenBalance);
  }

  event NativeSent(address indexed _to, uint256 _amount);
  event TokenSent(address indexed _token, address indexed _to, uint256 _amount);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "./PapparicoTreasury.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";

contract PapparicoFrequentPlayerPoints is AccessControl, ReentrancyGuard, IPapparicoPayable {

  using SafeMath for uint256;

  bytes32 constant SOURCE_BENEFIT = keccak256("SOURCE_BENEFIT");
  bytes32 constant TARGET_BENEFIT = keccak256("TARGET_BENEFIT");

  mapping(address => uint256) public userAccruedPoints;
  mapping(address => uint256) public userPointsUsed;
  uint256 public totalPointsUsed;

  PapparicoTreasury private immutable treasury;

  constructor(PapparicoTreasury _treasury) {

    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
    _grantRole(SOURCE_BENEFIT, msg.sender);
    _grantRole(TARGET_BENEFIT, msg.sender);

    treasury = _treasury;
  }

  function addPoints(address _user, uint256 _amount) external nonReentrant onlySourceBenefit() {
    userAccruedPoints[_user] = userAccruedPoints[_user].add(_amount);
    emit PointsAdded(_user, _amount);
  }

  function usePoints(address _user, uint256 _amount) external nonReentrant onlyTargetBenefit() {
    require(_amount > 0, "Can't use 0");
    require(userAccruedPoints[_user] >= _amount, "Insufficient points");
    userPointsUsed[_user] = userPointsUsed[_user].add(_amount);
    totalPointsUsed = totalPointsUsed.add(_amount);
    userAccruedPoints[_user] = userAccruedPoints[_user].sub(_amount);
    emit PointsUsed(_user, _amount);
  }

  function unusePoints(address _user, uint256 _amount) external nonReentrant onlyTargetBenefit() {
    userPointsUsed[_user] = userPointsUsed[_user].sub(_amount);
    totalPointsUsed = totalPointsUsed.sub(_amount);
    userAccruedPoints[_user] = userAccruedPoints[_user].add(_amount);
    emit PointsUnused(_user, _amount);
  }

  function getUserPointsUsed(address _user) external view returns (uint256) {
    return userPointsUsed[_user];
  }

  receive() external payable override { }

  function sendToken(IERC20 _token) external override onlyAdmin() {
    PayableUtils.sendToken(_token, address(treasury));
  }

  modifier onlySourceBenefit() {
    require(hasRole(SOURCE_BENEFIT, msg.sender), "NSourBen");
    _;
  }

  modifier onlyTargetBenefit() {
    require(hasRole(TARGET_BENEFIT, msg.sender), "NTargBen");
    _;
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
    _;
  }

  event PointsAdded(address indexed _user, uint256 indexed _value);
  event PointsUsed(address indexed _user, uint256 indexed _value);
  event PointsUnused(address indexed _user, uint256 indexed _value);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "./PapparicoTreasury.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";

contract PapparicoToken is ERC20("Papparico Finance Token", "PPFT"), AccessControl, IPapparicoPayable {

  using SafeMath for uint256;

  bytes32 public constant MINTER = keccak256("MINTER");
  bytes32 public constant BURNER = keccak256("BURNER");
  uint256 public constant DIGITS = 1e18;
  uint256 public constant MAX_SUPPLY = 73_000_000_000 * DIGITS;

  uint256 public remainingCommunitySupply;
  uint256 public remainingTeamSupply;
  uint256 public remainingInfraSupply;
  uint256 public remainingMarketingSupply;
  uint256 public burnt;

  mapping(SupplyTarget => uint256) public mintedBySupplyTarget;

  enum SupplyTarget {
    TOURNAMENTS,
    STAKING,
    VAULTS,
    LIQUIDITY,
    POOLS,
    TEAM,
    INFRASTRUCTURE,
    MARKETING
  }

  struct RemainingSupply {
    uint256 remainingCommunitySupply;
    uint256 remainingTeamSupply;
    uint256 remainingInfraSupply;
    uint256 remainingMarketingSupply;
  }

  struct MintedSupplyTarget {
    uint256 mintedForTournaments;
    uint256 mintedForStaking;
    uint256 mintedForVaults;
    uint256 mintedForLiquidity;
    uint256 mintedForBullishPools;
    uint256 mintedForTeam;
    uint256 mintedForInfrastructure;
    uint256 mintedForMarketing;
    uint256 totalMinted;
    uint256 totalBurnt;
  }

  PapparicoTreasury private immutable papparicoTreasury;

  constructor(PapparicoTreasury _papparicoTreasury) {
    papparicoTreasury = _papparicoTreasury;

    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
    _grantRole(MINTER, msg.sender);
    _grantRole(BURNER, msg.sender);

     //Community
    uint256 launchpad    =  4_000_000_000 * DIGITS; //5.48%
    uint256 liquidity    =  7_300_000_000 * DIGITS; //10%
    uint256 staking      =  3_300_000_000 * DIGITS; //4.52%
    uint256 lpMining     =  3_650_000_000 * DIGITS; //5%
    uint256 bullishPools =  7_300_000_000 * DIGITS; //10%
    uint256 tournaments  = 14_600_000_000 * DIGITS; //20%
    uint256 vaults       = 14_600_000_000 * DIGITS; //20%

    remainingCommunitySupply = launchpad
      .add(liquidity)
      .add(staking)
      .add(lpMining);

    remainingCommunitySupply = remainingCommunitySupply  
      .add(bullishPools)
      .add(tournaments)
      .add(vaults);

    remainingTeamSupply      = 10_950_000_000 * DIGITS; //15%
    remainingInfraSupply     =  3_650_000_000 * DIGITS; //5%
    remainingMarketingSupply =  3_650_000_000 * DIGITS; //5%
  }

  function mint(address _account, uint256 _amount, SupplyTarget _supplyTarget) public onlyMinter() 
    checkMintRequirements(_amount, _supplyTarget) {
    mintedBySupplyTarget[_supplyTarget] = mintedBySupplyTarget[_supplyTarget].add(_amount);  
    adjustSupply(_amount, _supplyTarget);
    _mint(_account, _amount);
    emit Minted(_account, _amount, uint256(_supplyTarget), block.timestamp);
  }

  function burn(uint256 _amount) public onlyBurner() {
    burnt = burnt.add(_amount);
    _burn(msg.sender, _amount);
    emit Burnt(msg.sender, _amount, block.timestamp);
  }

  function adjustSupply(uint256 _amount, SupplyTarget _supplyTarget) private onlyMinter() {
    if (_supplyTarget == SupplyTarget.TEAM) {
      remainingTeamSupply = remainingTeamSupply.sub(_amount);
    } else if (_supplyTarget == SupplyTarget.INFRASTRUCTURE) {
      remainingInfraSupply = remainingInfraSupply.sub(_amount);
    } else if (_supplyTarget == SupplyTarget.MARKETING) {
      remainingMarketingSupply = remainingMarketingSupply.sub(_amount);
    } else {
      remainingCommunitySupply = remainingCommunitySupply.sub(_amount);
    }
  }

  function getMaxSupply() external pure returns (uint256) {
    return MAX_SUPPLY;
  }

  function getRemainingSupply() external view returns (RemainingSupply memory) {
    RemainingSupply memory remainingSupply = RemainingSupply({
      remainingCommunitySupply: remainingCommunitySupply,
      remainingTeamSupply     : remainingTeamSupply,
      remainingInfraSupply    : remainingInfraSupply,
      remainingMarketingSupply: remainingMarketingSupply
    });
    return remainingSupply;
  }

  function getMintedSupplyTarget() external view returns (MintedSupplyTarget memory) {
    MintedSupplyTarget memory minted = MintedSupplyTarget({
      mintedForTournaments   : mintedBySupplyTarget[SupplyTarget.TOURNAMENTS],
      mintedForStaking       : mintedBySupplyTarget[SupplyTarget.STAKING],
      mintedForVaults        : mintedBySupplyTarget[SupplyTarget.VAULTS],
      mintedForLiquidity     : mintedBySupplyTarget[SupplyTarget.LIQUIDITY],
      mintedForBullishPools  : mintedBySupplyTarget[SupplyTarget.POOLS],
      mintedForTeam          : mintedBySupplyTarget[SupplyTarget.TEAM],
      mintedForInfrastructure: mintedBySupplyTarget[SupplyTarget.INFRASTRUCTURE],
      mintedForMarketing     : mintedBySupplyTarget[SupplyTarget.MARKETING],
      totalMinted: 0,
      totalBurnt: burnt
    });
    minted.totalMinted = minted.mintedForTournaments
      .add(minted.mintedForStaking)
      .add(minted.mintedForVaults)
      .add(minted.mintedForLiquidity)
      .add(minted.mintedForBullishPools)
      .add(minted.mintedForTeam)
      .add(minted.mintedForInfrastructure)
      .add(minted.mintedForMarketing);
    return minted;
  }

  receive() external payable override {
    PayableUtils.sendNative(address(papparicoTreasury));
  }

  function sendToken(IERC20 _token) external override onlyAdmin() {
    PayableUtils.sendToken(_token, address(papparicoTreasury));
  }

  modifier onlyMinter() {
    require(hasRole(MINTER, msg.sender), "Not Minter");
    _;
  }

  modifier onlyBurner() {
    require(hasRole(BURNER, msg.sender), "Not Burner");
    _;
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Not Admin");
    _;
  }

  modifier checkMintRequirements(uint256 _amount, SupplyTarget _supplyTarget) {
    require(_amount > 0, "You can't mint 0");
    require(_amount.add(totalSupply()) <= MAX_SUPPLY, "Mint exceeds MaxSupply");
    if (_supplyTarget == SupplyTarget.TEAM) {
      require(remainingTeamSupply >= _amount, "Exceeds the remaining team supply");
    } else if (_supplyTarget == SupplyTarget.INFRASTRUCTURE) {
      require(remainingInfraSupply >= _amount, "Exceeds the remaining infrastructure supply");
    } else if (_supplyTarget == SupplyTarget.MARKETING) {
      require(remainingMarketingSupply >= _amount, "Exceeds the remaining marketing supply");
    } else {
      require(remainingCommunitySupply >= _amount, "Exceeds the remaining community supply");
    }
    _;
  }

  event Minted(address indexed _destination, uint256 _amount, uint256 _supplyTarget, uint256 _time);
  event Burnt(address indexed _source, uint256 _amount, uint256 _time);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PapparicoVaults.sol";
import "./PapparicoTreasury.sol";
import "./PapparicoFrequentPlayerPoints.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";

contract PapparicoTournaments is AccessControl, ReentrancyGuard, IPapparicoPayable {

  using SafeERC20 for IERC20;
  using SafeMath for uint256;

  bytes32 constant CREATOR = keccak256("CREATOR");
  bytes32 constant UPDATER = keccak256("UPDATER");
  bytes32 constant PAYER = keccak256("PAYER");
  uint256 constant HPERC = 1e4;
  
  enum Status {
    SCH,
    REG,
    LIVE,
    FIN,
    CANC
  }
  
  enum EType {
    FREE,
    PD_TICK,
    PD
  }

  enum EReq {
    NO_REQ,
    V_48M
  }

  struct MainData {
    Status status;
    EType eType;
    EReq eReq;
    
    IERC20 eToken;
    IERC20 przToken;

    uint256 regPrice;
    uint256 regPricePts;
    uint256 userEarnPts;
    uint256 przPool;
    uint256 highestPrz;
    uint256 percTreasury;
    bool exists;
  }

  struct RegData {
    uint256 minRegs;
    uint256 maxRegs;
    uint256 currRegs;
  }

  struct UserReg {
    bool paid;
    uint256 regTime;
    uint256 deregTime;
  }

  struct UserPrz {
    uint256 prz;
    uint256 pts;
    bool paid;
    bool claimed;
    bool claimedPts;
  }

  mapping(uint256 => MainData) public mainData;
  mapping(uint256 => RegData) public regData;
  mapping(uint256 => mapping(address => UserReg)) public userRegs;
  mapping(uint256 => mapping(address => UserPrz)) public userPrizes;
  
  PapparicoVaults private immutable vaults;
  PapparicoTreasury private immutable treasury;
  PapparicoFrequentPlayerPoints private immutable frequentPoints;
  
  constructor(PapparicoVaults _vaults, PapparicoTreasury _treasury,
    PapparicoFrequentPlayerPoints _frequentPoints) {

    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
    _grantRole(CREATOR, msg.sender);
    _grantRole(UPDATER, msg.sender);
    _grantRole(PAYER, msg.sender);

    vaults = _vaults;
    treasury = _treasury;
    frequentPoints = _frequentPoints;
  }

  function register(uint256 _id, bool _usePoints) external nonReentrant validateReg(_id, _usePoints) {
    userRegs[_id][msg.sender].regTime = block.timestamp;
    regData[_id].currRegs++;
    userPrizes[_id][msg.sender].pts = mainData[_id].userEarnPts;
    
    if (isRegPayable(_id, _usePoints)) {
      userRegs[_id][msg.sender].paid = true;

      uint256 deduction = Math.mulDiv(mainData[_id].regPrice, mainData[_id].percTreasury, HPERC);
      
      mainData[_id].eToken.safeTransferFrom(msg.sender, address(this), mainData[_id].regPrice);
      
      if (deduction > 0) {
        mainData[_id].eToken.safeTransfer(address(treasury), deduction);
      }
    } else if (mainData[_id].eType == EType.PD_TICK) {
      userRegs[_id][msg.sender].paid = false;
      frequentPoints.usePoints(msg.sender, mainData[_id].regPricePts);
    }
    emit Regd(msg.sender, _id, userRegs[_id][msg.sender].regTime);
  }

  function deregister(uint256 _id) external nonReentrant validateDereg(_id) {
    userRegs[_id][msg.sender].deregTime = block.timestamp;
    regData[_id].currRegs--;
    userPrizes[_id][msg.sender].pts = 0;
  
    if (userRegs[_id][msg.sender].paid) {

      uint256 deduction = Math.mulDiv(mainData[_id].regPrice, mainData[_id].percTreasury, HPERC);

      if (deduction > 0) {
        treasury.sendToken(mainData[_id].eToken, address(this), deduction);
      }

      mainData[_id].eToken.safeTransfer(msg.sender, mainData[_id].regPrice);
    } else if (mainData[_id].eType == EType.PD_TICK) {
      frequentPoints.unusePoints(msg.sender, mainData[_id].regPricePts);
    }
    emit Deregd(msg.sender, _id, userRegs[_id][msg.sender].deregTime);
  }

  function claimPrize(uint256 _id) external nonReentrant validateClaim(_id) {
    uint256 prize = userPrizes[_id][msg.sender].prz;
    userPrizes[_id][msg.sender].prz = 0;
    userPrizes[_id][msg.sender].claimed = true;
    if (prize >= mainData[_id].przPool) {
      mainData[_id].przPool = 0;
    } else {
      mainData[_id].przPool = mainData[_id].przPool.sub(prize);
    }
    _getPts(_id);
    mainData[_id].przToken.safeTransfer(msg.sender, prize);
    emit Claimed(msg.sender, _id, mainData[_id].przToken, prize);
  }

  function claimPts(uint256 _id) external nonReentrant validateClaimPts(_id) {
    _getPts(_id);
  }

  function _getPts(uint256 _id) private {
    uint256 pts = userPrizes[_id][msg.sender].pts;
    if (pts > 0) {
      userPrizes[_id][msg.sender].pts = 0;
      userPrizes[_id][msg.sender].claimedPts = true;
      frequentPoints.addPoints(msg.sender, pts);
      emit PointsClaimed(msg.sender, _id, pts, block.timestamp);
    }
  }

  function create(uint256 _id, MainData memory _mainData, RegData memory _regData) external onlyCreator() validateCreation(_id) {
    mainData[_id].status       = Status.SCH;
    mainData[_id].eType        = _mainData.eType;
    mainData[_id].eReq         = _mainData.eReq;
    mainData[_id].eToken       = _mainData.eToken;
    mainData[_id].przToken     = _mainData.przToken;
    mainData[_id].regPrice     = _mainData.regPrice;
    mainData[_id].regPricePts  = _mainData.regPricePts;
    mainData[_id].userEarnPts  = _mainData.userEarnPts;
    mainData[_id].przPool      = _mainData.przPool;
    mainData[_id].highestPrz   = _mainData.highestPrz;
    mainData[_id].percTreasury = _mainData.percTreasury;
    mainData[_id].exists = true;

    regData[_id].minRegs = _regData.minRegs;
    regData[_id].maxRegs = _regData.maxRegs;
    regData[_id].currRegs = 0;

    emit Crtd(_id, block.timestamp); 
  }

  function update(uint256 _id, uint256 _status, bool _onlyStatus, 
    uint256 _przPool, uint256 _highestPrz) external onlyUpdater() {

    require(_status >= 0 && _status <= 4, "ISTS");
    require(exists(_id), "NEX");
    mainData[_id].status = Status(_status);
    emit UpdStatus(_id, _status);
    if (!_onlyStatus) {
      mainData[_id].przPool = _przPool;
      mainData[_id].highestPrz = _highestPrz;
      emit UpdPrize(_id, _przPool, _highestPrz);
    }
  }

  function payPrize(address _user, uint256 _id, uint256 _prz) external 
    onlyPayer() validatePayPrize(_user, _id, _prz) {

    userPrizes[_id][_user].paid = true;
    userPrizes[_id][_user].prz = _prz;
    emit Paid(_user, _id, _prz);
  }

  function isRegPayable(uint256 _id, bool _usePoints) private view returns (bool) {
    if (mainData[_id].eType == EType.FREE) {
      return false;
    }
    if (mainData[_id].eType == EType.PD) {
      return true;
    }
    return !_usePoints;
  }

  function getTotalRegs(uint256 _id) public view returns (uint256) {
    return regData[_id].currRegs;
  }

  function getRegTime(uint256 _id, address _user) public view returns (uint256 regTime, uint256 deregTime) {
    return (userRegs[_id][_user].regTime, userRegs[_id][_user].deregTime);
  }

  function getPrize(uint256 _id, address _user) public view returns (uint256) {
    return userPrizes[_id][_user].prz;
  }

  function getPts(uint256 _id, address _user) public view returns (uint256) {
    return userPrizes[_id][_user].pts;
  }

  function exists(uint256 _id) public view returns (bool) {
    return mainData[_id].exists;
  }

  function isRegd(uint256 _id, address _user) public view returns (bool) {
    return userRegs[_id][_user].regTime > userRegs[_id][_user].deregTime;
  }

  function isRegPaid(uint256 _id, address _user) public view returns (bool) {
    return userRegs[_id][_user].paid;
  }

  function isRegsOpen(uint256 _id) public view returns (bool) {
    if (mainData[_id].eType == EType.FREE || 
       (mainData[_id].eType == EType.PD && regData[_id].maxRegs > 0)) {

      return regData[_id].currRegs < regData[_id].maxRegs;
    }
    return true;
  }

  function isMeetReq(uint256 _id, address _user) public view returns (bool) {
    if (mainData[_id].eReq == EReq.V_48M) {
      return vaults.isDepV( _user, PapparicoVaults.VType.V_48M);
    }
    return true;
  }

  function getStatus(uint256 _id) public view returns (Status) {
    return mainData[_id].status;
  }

  function hasPrize(uint256 _id, address _user) public view returns (bool) {
    return userPrizes[_id][_user].prz > 0;
  }

  function isPrizePaid(uint256 _id, address _user) public view returns (bool) {
    return userPrizes[_id][_user].paid;
  }

  function claimed(uint256 _id, address _user) public view returns (bool) {
    return userPrizes[_id][_user].claimed;
  }

  function hasPts(uint256 _id, address _user) public view returns (bool) {
    return userPrizes[_id][_user].pts > 0;
  }

  function claimedPts(uint256 _id, address _user) public view returns (bool) {
    return userPrizes[_id][_user].claimedPts;
  }

  receive() external payable override { }

  function sendToken(IERC20 _token) external override onlyAdmin() {
    PayableUtils.sendToken(_token, address(treasury));
  }

  modifier onlyCreator() {
    require(hasRole(CREATOR, msg.sender), "NCrt");
    _;
  }

  modifier onlyUpdater() {
    require(hasRole(UPDATER, msg.sender), "NUpd");
    _;
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
    _;
  }

  modifier onlyPayer() {
    require(hasRole(PAYER, msg.sender), "NPay");
    _;
  }

  modifier validateReg(uint256 _id, bool _usePoints) {
    require(exists(_id), "NEX");
    require(getStatus(_id) != Status.FIN, "FIN");
    require(getStatus(_id) != Status.CANC, "CANC");
    require(getStatus(_id) == Status.REG, "RNStarted");
    require(isRegsOpen(_id), "RClosed");
    require(!isRegd(_id, msg.sender), "REG");
    require(isMeetReq(_id, msg.sender), "NMet");
    if (_usePoints) {
      require(mainData[_id].eType == EType.PD_TICK, "NAcc");
      uint256 entryPts = mainData[_id].regPricePts;
      uint256 availablePts = frequentPoints.userAccruedPoints(msg.sender);
      require(availablePts >= entryPts, "InsuffPts");
    }
    _;
  }

  modifier validateDereg(uint256 _id) {
    require(exists(_id), "NEX");
    require(getStatus(_id) != Status.FIN, "FIN");
    require(getStatus(_id) != Status.LIVE, "PRG");
    require(isRegd(_id, msg.sender), "NREG");
    _;
  }

  modifier validateClaim(uint256 _id) {
    require(!claimed(_id, msg.sender), "CLMD");
    require(exists(_id), "NEX");
    require(getStatus(_id) == Status.FIN, "NFIN");
    require(isRegd(_id, msg.sender), "NREG");
    require(address(mainData[_id].przToken) != address(0), "NPRZ");
    require(hasPrize(_id, msg.sender), "NPRZ");
    require(mainData[_id].przPool > 0, "NPRZ.POOL");
    _;
  }

  modifier validateClaimPts(uint256 _id) {
    require(!claimedPts(_id, msg.sender), "CLMD");
    require(exists(_id), "NEX");
    require(getStatus(_id) == Status.FIN, "NFIN");
    require(isRegd(_id, msg.sender), "NREG");
    require(hasPts(_id, msg.sender), "NPTS");
    _;
  }

  modifier validatePayPrize(address _user, uint256 _id, uint256 _prz) {
    require(exists(_id), "NEX");
    require(isRegd(_id, _user), "NREG");
    require(getStatus(_id) == Status.FIN, "NFIN");
    require(!userPrizes[_id][_user].paid, "PAID");
    require(_prz <= mainData[_id].highestPrz, "IPRZ");
    _;
  }

  modifier validateCreation(uint256 _id) {
    require(!exists(_id), "EX");
    _;
  }

  event Crtd(uint256 indexed _id, uint256 _time);
  event UpdStatus(uint256 indexed _id, uint256 _status);
  event UpdPrize(uint256 indexed _id, uint256 _przPool, uint256 _percMaxPrz);
  event Regd(address indexed _user, uint256 indexed _id, uint256 _regTime);
  event Deregd(address indexed _user, uint256 indexed _id, uint256 _deregTime);
  event Claimed(address indexed _user, uint256 indexed _id, IERC20 _tkn, uint256 _prz);
  event Paid(address indexed _user, uint256 indexed _id, uint256 _prz);
  event PointsClaimed(address indexed _user, uint256 indexed _id, uint256 _pts, uint256 _time);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract PapparicoTreasury is AccessControl {

  using SafeERC20 for IERC20;

  bytes32 public constant TOKEN_SENDER = keccak256("SENDER");

  constructor() {
    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
    _grantRole(TOKEN_SENDER, msg.sender);
  }

  receive() external payable { }

  function sendNative(address _to, uint256 _amount) public onlyTokenSender() {
    require(_amount > 0, "Can't send 0.");
    require(address(this).balance >= _amount, "Not enough balance.");
    payable(_to).transfer(_amount);
    emit NativeSent(_to, _amount);
  }

  function sendToken(IERC20 _token, address _to, uint256 _amount) public onlyTokenSender() {
    require(_amount > 0, "Can't send 0.");
    require(_token.balanceOf(address(this)) >= _amount, "Not enough balance.");
    _token.safeTransfer(_to, _amount);
    emit TokenSent(address(_token), _to, _amount);
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Caller does not have the Admin role.");
    _;
  }

  modifier onlyTokenSender() {
    require(hasRole(TOKEN_SENDER, msg.sender), "Caller does not have the Token Sender role.");
    _;
  }

  event NativeSent(address indexed _to, uint256 _amount);
  event TokenSent(address indexed _token, address indexed _to, uint256 _amount);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "./PapparicoToken.sol";
import "./PapparicoTreasury.sol";
import "./PapparicoFrequentPlayerPoints.sol";
import "./IPapparicoPayable.sol";
import "./lib/PayableUtils.sol";
import "./lib/DateUtils.sol";

contract PapparicoVaults is AccessControl, ReentrancyGuard, Pausable, IPapparicoPayable {

  using SafeERC20 for IERC20;
  using SafeMath for uint256;

  bytes32 constant OPERATOR = keccak256("OPERATOR");

  uint256 constant DIGITS = 1e18;
  uint256 constant PRECISION = 1e27;
  uint256 constant EMISSION = 6e1;
  uint256 constant EMISSION_PRECISION = 6e5;
  uint256 constant HPERC = 1e4;

  enum VType {
    V_1M,
    V_6M,
    V_12M,
    V_24M,
    V_48M
  }

  struct UserDeposit {
    VType vType;
    uint256 depositId;
    uint256 depositedValue;
    uint256 lockedUntil;
    bool isUnlocked;
  }

  mapping(VType => uint256) public currentRewardsPerToken;
  mapping(VType => uint256) public lastsUpdateTime;
  uint256 public avgBlockInterval;
  uint256 public rewardEmissionPerBlock;

  uint256 public earlyWithdrawalPoints;
  uint256 public earlyWithdrawalPerc;

  bool public isInitialized;
  uint256 public startBlock;

  uint256 public idCounter;
  address[] public users;
  mapping(address => uint256) public userIds;
  mapping(address => mapping(VType => UserDeposit[])) public userDeposits;

  uint256 public totalDepositedAllUsers;
  mapping(VType => uint256) public totalDepositedPerVault;

  mapping(address => mapping(VType => uint256)) public userCurrentRewards;
  mapping(address => mapping(VType => uint256)) public userRewardsPerTokenPaid;
  mapping(address => uint256) public userTotalClaimed;
  uint256 public totalClaimed;
  uint256 public totalRewards;

  PapparicoToken private immutable papparicoToken;
  PapparicoTreasury private immutable papparicoTreasury;
  PapparicoFrequentPlayerPoints private immutable frequentPoints;

  constructor(PapparicoToken _papparicoToken, PapparicoTreasury _papparicoTreasury,
    PapparicoFrequentPlayerPoints _frequentPoints) {

    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
    _grantRole(OPERATOR, msg.sender);

    papparicoToken = _papparicoToken;
    papparicoTreasury = _papparicoTreasury;
    frequentPoints = _frequentPoints;
    avgBlockInterval = 6 seconds;
  }

  function initialize(uint256 _startBlock, uint256 _rewardEmissionPerBlock) external onlyOperator() 
    validateInitialize(_startBlock, _rewardEmissionPerBlock) {

    isInitialized = true;

    uint256 currentTime = block.timestamp;
    uint256 currentBlock = block.number;

    startBlock = _startBlock;

    uint256 lastTime = (_startBlock - currentBlock).mul(avgBlockInterval).add(currentTime);
    for (uint8 i; i <= 4; ++i) {
      lastsUpdateTime[VType(i)] = lastTime;
    }

    rewardEmissionPerBlock = _rewardEmissionPerBlock;

    emit Initialized(currentTime);
  }

  function supplyRewards(uint256 _rewards) external onlyOperator() whenNotPaused() {
    totalRewards = totalRewards.add(_rewards);
    papparicoToken.mint(address(this), _rewards, PapparicoToken.SupplyTarget.VAULTS);
    emit RewardsSupplied(_rewards, block.timestamp);
  }

  function deposit(uint256 _amount, VType _vType) external nonReentrant() whenNotPaused() 
    validateDeposit(_amount, _vType)
    updateUserReward(msg.sender, _vType) {

    _claim();

    totalDepositedAllUsers = totalDepositedAllUsers.add(_amount);
    totalDepositedPerVault[_vType] = totalDepositedPerVault[_vType].add(_amount);

    uint256 depId = block.timestamp;
    _addDeposit(_vType, depId, _amount, calculateLockedUntil(depId, _vType));

    if (userIds[msg.sender] == 0) {
      ++idCounter;
      userIds[msg.sender] = idCounter;
      users.push(msg.sender);
      frequentPoints.addPoints(msg.sender, calculateFrequentPlayerPoints(_vType));
    }

    IERC20(papparicoToken).safeTransferFrom(msg.sender, address(this), _amount);
    emit Deposited(msg.sender, depId, _amount, uint256(_vType), block.timestamp);
  }

  function withdraw(VType _vType, uint256 _depId) external nonReentrant() whenNotPaused() 
    validateWithdrawal(_vType, _depId)
    updateUserReward(msg.sender, _vType) {

    _claim();

    uint256 depositedValue = getDepositedValue(_vType, _depId);
    _withdraw(_vType, _depId, depositedValue);

    IERC20(papparicoToken).safeTransfer(msg.sender, depositedValue);
    emit Withdrawn(msg.sender, _depId, depositedValue, uint256(_vType), block.timestamp);
  }

  function earlyWithdraw(VType _vType, uint256 _depId) external nonReentrant() whenNotPaused() 
    validateEarlyWithdrawal(_vType, _depId)
    updateUserReward(msg.sender, _vType) {

    _claim();

    uint256 depositedValue = getDepositedValue(_vType, _depId);
    uint256 early = depositedValue.mul(earlyWithdrawalPerc).div(HPERC);

    _withdraw(_vType, _depId, early);
    frequentPoints.usePoints(msg.sender, earlyWithdrawalPoints);

    uint256 locked = calculateLockedUntil(_depId, _vType);
    _addDeposit(_vType, _depId, depositedValue.sub(early), locked);

    IERC20(papparicoToken).safeTransfer(msg.sender, early);
    emit Withdrawn(msg.sender, _depId, early, uint256(_vType), block.timestamp);
  }

  function upgrade(VType _sourceVType, uint256 _depId, VType _targetVType) external nonReentrant() whenNotPaused()
    validateUpgrade(_sourceVType, _depId, _targetVType) 
    updateUserReward(msg.sender, _sourceVType)
    updateUserReward(msg.sender, _targetVType) {

    _claim();

    uint256 depositedValue = getDepositedValue(_sourceVType, _depId);
    totalDepositedPerVault[_sourceVType] = totalDepositedPerVault[_sourceVType].sub(depositedValue);
    totalDepositedPerVault[_targetVType] = totalDepositedPerVault[_targetVType].add(depositedValue);
    removeDeposit(_sourceVType, _depId);

    uint256 depId = block.timestamp;
    uint256 locked = calculateLockedUntil(depId, _targetVType);
    _addDeposit(_targetVType, depId, depositedValue, locked);

    emit Upgraded(msg.sender, _depId, depId, uint256(_targetVType), block.timestamp);
  }

  function claim() public nonReentrant() whenNotPaused() {
    _claim();
  }

  function _addDeposit(VType _vType, uint256 _depId, uint256 _depValue, uint256 _lockedUntil) private {
    UserDeposit memory userDeposit = UserDeposit({
      vType: _vType,
      depositId: _depId,
      depositedValue: _depValue,
      lockedUntil: _lockedUntil,
      isUnlocked: false
    });
    userDeposits[msg.sender][_vType].push(userDeposit);
  }

  function _withdraw(VType _vType, uint256 _depId, uint256 _amount) private {
    totalDepositedAllUsers = totalDepositedAllUsers.sub(_amount);
    totalDepositedPerVault[_vType] = totalDepositedPerVault[_vType].sub(_amount);
    removeDeposit(_vType, _depId);
  }

  function _claim() private updateUserRewardWhenClaim(msg.sender) {
    uint256 rewards;
    address user = msg.sender;
    for (uint8 i; i <= 4; ++i) {
      if (isDepV(user, VType(i))) {
        rewards = rewards.add(userCurrentRewards[user][VType(i)]);
        userCurrentRewards[user][VType(i)] = 0;
      }
    }
    if (rewards > 0) {
      userTotalClaimed[msg.sender] = userTotalClaimed[msg.sender].add(rewards);
      totalClaimed = totalClaimed.add(rewards);
      totalRewards = totalRewards.sub(rewards);
      IERC20(papparicoToken).safeTransfer(user, rewards);
      emit Claimed(user, rewards, block.timestamp);
    }
  }

  function depositsOf(address _user, VType _vType) external view returns (UserDeposit[] memory) {
    UserDeposit[] memory deposits = userDeposits[_user][_vType];
    for (uint256 i; i < userDeposits[_user][_vType].length; ++i) {
      deposits[i].isUnlocked = userDeposits[_user][_vType][i].lockedUntil < block.timestamp;
    }
    return deposits;
  }

  function getDepositedValue(VType _vType, uint256 _depId) private view returns (uint256) {
    ( , , , uint256 value, ) = depositExists(msg.sender, _vType, _depId);
    return value;
  }

  function depositExists(address _user, VType _vType, uint256 _depId) private view returns (bool, uint256, uint256, uint256, uint256) {
    uint256 length = userDeposits[_user][_vType].length;
    for (uint256 pos; pos < length; ++pos) {
      if (userDeposits[_user][_vType][pos].depositId == _depId) {
        return (
          true,
          pos,
          userDeposits[_user][_vType][pos].depositId,
          userDeposits[_user][_vType][pos].depositedValue,
          userDeposits[_user][_vType][pos].lockedUntil
        );
      }
    }
    return (false, 0, 0, 0, 0);
  }

  function getDepositArrayPosition(VType _vType, uint256 _depId) private view returns (uint256) {
    ( , uint256 pos, , , ) = depositExists(msg.sender, _vType, _depId);
    return pos;
  }

  function removeDeposit(VType _vType, uint256 _depId) private {
    uint256 length = userDeposits[msg.sender][_vType].length;
    uint256 position = getDepositArrayPosition(_vType, _depId);
    userDeposits[msg.sender][_vType][position] = userDeposits[msg.sender][_vType][length - 1];
    userDeposits[msg.sender][_vType].pop();
  }

  function isEmissionsStarted() public view returns (bool) {
    return isInitialized && block.number >= startBlock;
  }

  function calculateFrequentPlayerPoints(VType _vType) private pure returns (uint256) {
    uint16 points = 
      (_vType == VType.V_1M ? 1 : 
        (_vType == VType.V_6M ? 2 : 
          (_vType == VType.V_12M ? 3 : 
            (_vType == VType.V_24M ? 4 : 5))));

    return points;
  }

  function calculateLockedUntil(uint256 currentTime, VType _vType) public pure returns (uint256) {
    uint16 months = 
      (_vType == VType.V_1M ? 1 : 
        (_vType == VType.V_6M ? 6 : 
          (_vType == VType.V_12M ? 12 : 
            (_vType == VType.V_24M ? 24 : 48))));

    return DateUtils.addMonths(currentTime, months);
  }

  function calculateLockedUntil(VType _vType) public view returns (uint256) {
    return calculateLockedUntil(block.timestamp, _vType);
  }

  function calculateRewardRate(VType _vType) private view returns (uint256) {
    return rewardEmissionPerBlock.mul(getMultiplier(_vType)).mul(EMISSION).div(avgBlockInterval);
  }

  function getMultiplier(VType _vType) private pure returns (uint8) {
    return 
      (_vType == VType.V_1M ? 2 : 
        (_vType == VType.V_6M ? 12 : 
          (_vType == VType.V_12M ? 24 : 
            (_vType == VType.V_24M ? 48 : 96))));
  }

  function calculateRewardPerToken(VType _vType) private view returns (uint256) {
    if (!isEmissionsStarted()) {
      return 0;
    }
    if (totalDepositedAllUsers == 0 || totalDepositedPerVault[_vType] == 0) {
      return currentRewardsPerToken[_vType];
    }
    return currentRewardsPerToken[_vType].add((block.timestamp - lastsUpdateTime[_vType])
      .mul(calculateRewardRate(_vType)).mul(PRECISION).div(EMISSION_PRECISION).div(totalDepositedPerVault[_vType]));
  }

  function sumUserDeposits(address _user, VType _vType) private view returns (uint256) {
    uint256 sum = 0;
    uint256 length = userDeposits[_user][_vType].length;
    if (length == 0) {
      return sum;
    }
    for (uint256 i; i < length; ++i) {
      sum = sum.add(userDeposits[_user][_vType][i].depositedValue);
    }
    return sum;
  }

  function rewardsOf(address _user, VType _vType) private view returns (uint256) {
    uint256 userRewards = 0;
    if (!isEmissionsStarted()) {
      return userRewards;
    }
    userRewards = userRewards.add
    (
      sumUserDeposits(_user, _vType)
        .mul(calculateRewardPerToken(_vType).sub(userRewardsPerTokenPaid[_user][_vType]))
        .mul(DIGITS).div(PRECISION)
    );
    return userRewards.add(userCurrentRewards[_user][_vType]);
  }

  function rewardsOf(address _user) public view returns (uint256) {
    uint256 rewards = 0;
    for (uint8 i; i <= 4; ++i) {
      if (isDepV(_user, VType(i))) {
        rewards = rewards.add(rewardsOf(_user, VType(i)));
      }
    }
    return rewards;
  }

  function isDepV(address _user, VType _vType) public view returns (bool) {
    return sumUserDeposits(_user, _vType) > 0;
  }

  function isDepAV(address _user) public view returns (bool) {
    return 
      this.isDepV(_user, VType.V_1M)  || 
      this.isDepV(_user, VType.V_6M)  || 
      this.isDepV(_user, VType.V_12M) || 
      this.isDepV(_user, VType.V_24M) || 
      this.isDepV(_user, VType.V_48M);
  }

  function setStartBlock(uint256 _startBlock) external onlyOperator() {
    require(!isEmissionsStarted(), "EmSt");
    require(_startBlock >= block.number, "InvB");
    startBlock = _startBlock;
    uint256 currentTime = block.timestamp;
    uint256 currentBlock = block.number;
    uint256 lastTime = (_startBlock - currentBlock).mul(avgBlockInterval).add(currentTime);
    for (uint8 i; i <= 4; ++i) {
      lastsUpdateTime[VType(i)] = lastTime;
    }
  }

  function setAvgBlockInterval(uint256 _secondsAmount) external onlyOperator() {
    avgBlockInterval = _secondsAmount;
    emit AvgBlockIntervalChanged(block.timestamp, _secondsAmount);
  }

  function setRewardEmissionPerBlock(uint256 _amount) external onlyOperator() {
    if (isEmissionsStarted()) {
      updateAll();
    }
    rewardEmissionPerBlock = _amount;
    emit RewardEmissionPerBlockChanged(block.timestamp, _amount);
  }

  function setEarlyWithdrawalParams(uint256 _points, uint256 _perc) external onlyOperator() {
    earlyWithdrawalPoints = _points;
    earlyWithdrawalPerc = _perc;
  }

  function updateAll() private onlyOperator() {
    for (uint256 i; i < users.length; ++i) {
      for (uint8 j; j <= 4; ++j) {
        address user = users[i];
        VType vType = VType(j);
        if (isDepV(user, vType)) {
          doUpdateUserReward(user, vType);
        }
      }
    }
  }

  receive() external payable override {
    PayableUtils.sendNative(address(papparicoTreasury));
  }

  function sendToken(IERC20 _token) external override onlyAdmin() {
    require(address(_token) != address(papparicoToken), "Can't send Papparico");
    PayableUtils.sendToken(_token, address(papparicoTreasury));
  }

  function pause() public onlyAdmin() {
    _pause();
  }

  function unpause() public onlyAdmin() {
    _unpause();
  }

  function doUpdateUserReward(address _user, VType _vType) private {
    if (isEmissionsStarted()) {
      currentRewardsPerToken[_vType] = calculateRewardPerToken(_vType);
      lastsUpdateTime[_vType] = block.timestamp;
      userCurrentRewards[_user][_vType] = rewardsOf(_user, _vType);
      userRewardsPerTokenPaid[_user][_vType] = currentRewardsPerToken[_vType];
    }
  }

  modifier updateUserRewardWhenClaim(address _user) {
    if (isEmissionsStarted()) {
      for (uint8 i; i <= 4; ++i) {
        if (isDepV(_user, VType(i))) {
          doUpdateUserReward(_user, VType(i));
        }
      }
    }
    _;
  }

  modifier updateUserReward(address _user, VType _vType) {
    doUpdateUserReward(_user, _vType);
    _;
  }

  modifier validateInitialize(uint256 _startBlock, uint256 _rewardEmissionPerBlock) {
    require(!isInitialized, "Inilzd");
    require(_startBlock >= block.number, "InvB");
    require(_rewardEmissionPerBlock > 0, "Gt0");
    _;
  }

  modifier validateDeposit(uint256 _amount, VType _vType) {
    require(_amount > 0, "Gt0");
    require(papparicoToken.balanceOf(msg.sender) >= _amount, "Nfun");
    _;
  }

  modifier validateWithdrawal(VType _vType, uint256 _depId) {
    (bool exists, , , , uint256 lockedUntil) = depositExists(msg.sender, _vType, _depId);
    require(exists, "Nexists");
    require(lockedUntil <= block.timestamp, "Ntime");
    _;
  }

  modifier validateEarlyWithdrawal(VType _vType, uint256 _depId) {
    require(earlyWithdrawalPoints > 0 && earlyWithdrawalPerc > 0, "NActd");
    uint256 availablePts = frequentPoints.userAccruedPoints(msg.sender);
    require(availablePts >= earlyWithdrawalPoints, "InsuffPts");
    (bool exists, , , , uint256 lockedUntil) = depositExists(msg.sender, _vType, _depId);
    require(exists, "Nexists");
    _;
  }

  modifier validateUpgrade(VType _sourceVType, uint256 _depId, VType _targetVType) {
    (bool exists, , , , ) = depositExists(msg.sender, _sourceVType, _depId);
    require(exists, "Nexists");
    require(_sourceVType != VType.V_48M, "NUpgd");
    require(uint(_sourceVType) < uint(_targetVType), "InvSrc");
    _;
  }

  modifier onlyOperator() {
    require(hasRole(OPERATOR, msg.sender), "NOptr");
    _;
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "NAdm");
    _;
  }

  event Initialized(uint256 _timestamp);
  event RewardsSupplied(uint256 _rewards, uint256 _timestamp);
  event AvgBlockIntervalChanged(uint256 _timestamp, uint256 _value);
  event RewardEmissionPerBlockChanged(uint256 _timestamp, uint256 _value);
  event Deposited(address indexed _user, uint256 _depositId, uint256 _amount, uint256 _vType, uint256 _timestamp);
  event Withdrawn(address indexed _user, uint256 _depositId, uint256 _amount, uint256 _vType, uint256 _timestamp);
  event Claimed(address indexed _user, uint256 _amount, uint256 _timestamp);
  event Upgraded(address indexed _user, uint256 _sourceDepId, uint256 _targetDepId, uint256 _targetVType, uint256 _timestamp);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):